Using Viewing Time for Theme Prediction in Cultural Heritage Spaces | SpringerLink
Skip to main content

Using Viewing Time for Theme Prediction in Cultural Heritage Spaces

  • Conference paper
AI 2007: Advances in Artificial Intelligence (AI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4830))

Included in the following conference series:

Abstract

Visitors to cultural heritage sites are often overwhelmed by the information available in the space they are exploring. The challenge is to find items of relevance in the limited time available. Mobile computer systems can provide guidance and point to relevant information by identifying and recommending content that matches a user’s interests. In this paper we infer implicit ratings from observed viewing times, and outline a collaborative user modelling approach to predict a user’s interests and expected viewing times. We make predictions about viewing themes (item sets) taking into account the visitor’s time limit. Our model based on relative interests with imputed ratings yielded the best performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Petrelli, D., Not, E.: User-centred design of flexible hypermedia for a mobile guide: Reflections on the HyperAudio experience. User Modeling and User-Adapted Interaction 15(3-4), 303–338 (2005)

    Article  Google Scholar 

  2. Oppermann, R., Specht, M.: A context-sensitive nomadic information system as an exhibition guide. In: Thomas, P., Gellersen, H.-W. (eds.) HUC 2000. LNCS, vol. 1927, pp. 127–142. Springer, Heidelberg (2000)

    Google Scholar 

  3. Hatala, M., Wakkary, R.: Ontology-based user modeling in an augmented audio reality system for museums. User Modeling and User-Adapted Interaction 15(3-4), 339–380 (2005)

    Article  Google Scholar 

  4. Zukerman, I., Albrecht, D.W.: Predictive statistical models for user modeling. User Modeling and User-Adapted Interaction 11(1-2), 5–18 (2001)

    Article  MATH  Google Scholar 

  5. Albrecht, D.W., Zukerman, I.: Introduction to the special issue on statistical and probabilistic methods for user modeling. User Modeling and User-Adapted Interaction 17(1-2), 1–4 (2007)

    Article  Google Scholar 

  6. Burke, R.: Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction 12(4), 331–370 (2002)

    Article  MATH  Google Scholar 

  7. Berlyne, D.E.: Conflict, Arousal, and Curiosity. McGraw-Hill, New York (1960)

    Google Scholar 

  8. Heinrich, P.: “Free looking time”: Eine Methode zur Präferenzbestimmung. Psychologie und Praxis 14(2), 79–93 (1970)

    Google Scholar 

  9. Fink, J., Kobsa, J.: User modeling for personalized city tours. Artificial Intelligence Review 18(1), 33–74 (2002)

    Article  MATH  Google Scholar 

  10. Shardanand, U., Maes, P.: Social information filtering: Algorithms for automating “word of mouth”. In: CHI 1995. Proceedings of the 1995 SIGCHI Conference on Human Factors in Computing Systems, pp. 210–217 (1995)

    Google Scholar 

  11. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: An open architecture for collaborative filtering of netnews. In: CSCW 1994. Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work, pp. 175–186 (1994)

    Google Scholar 

  12. Véron, E., Levasseur, M.: Ethnographie de l’exposition. Bibliothèque Publique d’Information, Centre Georges Pompidou, Paris (1983)

    Google Scholar 

  13. Sparacino, F.: The Museum Wearable – Real-time sensor-driven understanding of visitors’ interests for personalized visually-augmented museum experiences. In: MW 2002. Proceedings of the 11th International Conference on Museums and the Web (2002)

    Google Scholar 

  14. Zancanaro, M., Kuflik, T., Boger, Z., Goren-Bar, D., Goldwasser, D.: Analyzing museum visitors’ behavior patterns. In: UM 2007. Proceedings of the 11th International Conference on User Modeling (2007)

    Google Scholar 

  15. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems 22(1), 5–53 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mehmet A. Orgun John Thornton

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bohnert, F., Zukerman, I. (2007). Using Viewing Time for Theme Prediction in Cultural Heritage Spaces. In: Orgun, M.A., Thornton, J. (eds) AI 2007: Advances in Artificial Intelligence. AI 2007. Lecture Notes in Computer Science(), vol 4830. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76928-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76928-6_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76926-2

  • Online ISBN: 978-3-540-76928-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics