RAUU: Rate Adaptation for Unreliable Unicast Traffic in High Speed Networks | SpringerLink
Skip to main content

RAUU: Rate Adaptation for Unreliable Unicast Traffic in High Speed Networks

  • Conference paper
IP Operations and Management (IPOM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 4786))

Included in the following conference series:

  • 424 Accesses

Abstract

While long term throughput not exceeding TCP with Reno congestion control algorithm is widely accepted as the criterion of weighing TCP friendliness, this may lead to resource waste in high speed networks due to Reno’s known performance limits. Inspired by FAST TCP, a congestion control algorithm named Rate Adaptation for Unreliable Unicast traffic (RAUU) is proposed for unreliable unicast traffic in high speed networks to improve its efficiency while still holding friendliness to TCP. Being a rate-based approach to best fit unreliable unicast traffic, RAUU has made special design choices to alleviate the inherent contiguous loss problem of rate adaptation algorithms. Like FAST, it also tries to maintain appropriate number of extra packets in networks, and for that purpose it combines loss and delay as congestion signals. Theoretical analysis shows that in ideal networks RAUU has and will converge to its one and only equilibrium state where the number of extra packets is equal to the preset value. Plentiful simulation experiments confirmed that it could achieve similar performance to FAST as well as comparable throughput smoothness to TFRC while keeping TCP-friendliness at the same time.

Supported by the National Natural Foundation of China under Grant No. 90304016.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Floyd, S., Handley, M., Padhye, J., et al.: Equation-Based Congestion Control for Unicast Applications. In: Proc. of ACM SIGCOMM, Stockholm, Sweden, pp. 43–56 (2000)

    Google Scholar 

  2. Floyd, S., Fall, K.: Promoting the Use of End-to-End Congestion Control in the Internet. IEEE/ACM Transactions on Networking 7, 458–472 (1999)

    Article  Google Scholar 

  3. Jin, C., Wei, D.X., Low, S., et al.: FAST TCP: Motivation, Architecture, Algorithms, Performance. In: Proc. of IEEE INFOCOM, HongKong, China, pp. 2490–2501 (2004)

    Google Scholar 

  4. Jin, C., Wei, D.X., Low, S., et al.: FAST TCP: From Theory to Experiments. IEEE Network 19, 4–11 (2005)

    Google Scholar 

  5. Rhee, I., Ozdemir, V., Yi, Y.: TEAR: TCP Emulation at Receivers – Flow Control for Multimedia Streaming. Technical Report (2000), http://www.csc.ncsu.edu/faculty/rhee/export/tear-page/techreport/tearf.pdf

  6. Kohler, E., Handley, M., Floyd, S.: Datagram Congestion Control Protocol (DCCP). Internet Draft (2005), http://www.ietf.org/internet-drafts/draft-ietf-dccp-spec-13.txt

  7. Floyd, S., Kohler, E.: Profile for DCCP Congestion Control ID 2: TCP-like Congestion Control. Internet Draft (2005), http://www.ietf.org/internet-drafts/draft-ietf-dccp-ccid2-10.txt

  8. Yang, Y.R., Lam, S.S.: General AIMD Congestion Control. In: Proc. of the 8th IEEE International Conference on Network Protocols, Osaka, Japan, pp. 187–198 (2000)

    Google Scholar 

  9. Bansal, D., Balakrishnan, H.: Binomial Congestion Control Algorithms. In: Proc. of IEEE INFOCOM, Alaska, USA, pp. 631–640 (2001)

    Google Scholar 

  10. Rejaie, R., Handley, M., Estrin, D.: RAP: An End-to-End Rate-Based Congestion Control Mechanism for Realtime Streams in the Internet. In: Proc. of IEEE INFOCOM, New York, USA, pp. 1337–1345 (1999)

    Google Scholar 

  11. Sisalem, D., Schulzrinne, H.: The Loss-Delay Based Adjustment Algorithm: A TCP-Friendly Adaptation Scheme. In: Proc. of Workshop on Network and Operating System Support for Digital Audio and Video, pp. 215–226. Cambridge, UK (1998)

    Google Scholar 

  12. Sisalem, D., Wolisz, A.: LDA+: A TCP-Friendly Adaptation Scheme for Multimedia Communication. In: Proc. of IEEE International Conference on Multimedia and Expo (III). GMD-Fokus, Germany, pp. 1619–1622 (2000)

    Google Scholar 

  13. Padhye, J., Firoiu, V., Towsley, D., et al.: Modeling TCP Throughput: A Simple Model and its Empirical Validation. In: Proc. of ACM SIGCOMM. Vancouver, California, pp. 303-314 (1998)

    Google Scholar 

  14. Chiu, D., Jain, R.: Analysis of the Increase and Decrease Algorithms for Congestion Avoidance in Computer Networks. Computer Networks & ISDN Systems 17, 1–14 (1989)

    Article  MATH  Google Scholar 

  15. Loguinov, D., Radha, H.: End-to-End Rate-Based Congestion Control: Convergence Properties and Scalability Analysis. IEEE/ACM Transactions on Networking 11, 564–577 (2003)

    Article  Google Scholar 

  16. The Network Simulator – ns-2 (2006), http://www.isi.edu/nsnam/ns/

  17. Song, L.H., Wang, H.T., Chen, M.: Congestion Control Scheme Aiming at P2P Applications in High-Speed Networks. In: Proc. of the 19th International Teletraffic Congress, Beijing, China, pp. 2099–2108 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Deep Medhi José Marcos Nogueira Tom Pfeifer S. Felix Wu

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Song, L., Wang, H., Chen, M. (2007). RAUU: Rate Adaptation for Unreliable Unicast Traffic in High Speed Networks. In: Medhi, D., Nogueira, J.M., Pfeifer, T., Wu, S.F. (eds) IP Operations and Management. IPOM 2007. Lecture Notes in Computer Science, vol 4786. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75853-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75853-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75852-5

  • Online ISBN: 978-3-540-75853-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics