Abstract
We introduce an original 2-valued semantics for Normal Logic Programs (NLPs) extending the well-known Argumentation work of Phan Minh Dung on Admissible Arguments and Preferred Extensions. In the 2-valued Approved Models Semantics set forth, an Approved Model (AM) correspond to the minimal positive strict consistent 2-valued completion of a Dung Preferred Extension. The AMs Semantics enjoys several non-trivial useful properties such as (1) Existence of a 2-valued Model for every NLP; (2) Relevancy, and (3) Cumulativity. Crucially, we show that the AMs Semantics is a conservative extension to the Stable Models (SMs) Semantics in the sense that every SM of a NLP is also an AM, thus providing every NLP with a model: a property not enjoyed by SMs. Integrity constraints, written in a simpler way, are introduced to identify undesired semantic scenarios, whilst permitting these to be produced nevertheless. We end the paper with some conclusions and mention of future work.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alferes, J.J., Brogi, A., Leite, J.A., Pereira, L.M.: Evolving logic programs. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 50–61. Springer, Heidelberg (2002)
Alferes, J.J., Pereira, L.M.: An argumentation theoretic semantics based on non-refutable falsity. In: Dix, J., et al. (eds.) NMELP, pp. 3–22. Springer, Heidelberg (1994)
Baral, C., Subrahmanian, V.S.: Dualities between alternative semantics for logic programming and nonmonotonic reasoning. J. Autom. Reasoning 10(3), 399–420 (1993)
Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract, argumentation-theoretic approach to default reasoning. Artif. Intell. 93, 63–101 (1997)
Dix, J.: A Classification-Theory of Semantics of Normal Logic Programs: I, II. Fundamenta Informaticae XXII(3), 227–255, 257–288 (1995)
Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)
Dung, P.M., Kowalski, R.A., Toni, F.: Dialectic proof procedures for assumption-based, admissible argumentation. Artif. Intell. 170(2), 114–159 (2006)
Fages, F.: Consistency of Clark’s completion and existence of stable models. Methods of Logic in Computer Science 1, 51–60 (1994)
Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: ICLP/SLP, pp. 1070–1080. MIT Press, Cambridge (1988)
Kakas, A.C., Mancarella, P.: Negation as stable hypotheses. In: LPNMR, pp. 275–288. MIT Press, Cambridge (1991)
Malý, M.: Complexity of revised stable models. Master’s thesis, Comenius University Bratislava (2006)
Pereira, L.M., Pinto, A.M.: Revised stable models - a semantics for logic programs. In: Bento, C., Cardoso, A., Dias, G. (eds.) EPIA 2005. LNCS (LNAI), vol. 3808, pp. 29–42. Springer, Heidelberg (2005)
Pereira, L.M., Pinto, A.M.: Reductio ad absurdum argumentation in normal logic programs. In: Argumentation and Non-monotonic Reasoning (ArgNMR 2007) workshop at LPNMR 2007, pp. 96–113 (2007)
Pinto, A.M.: Explorations in revised stable models — a new semantics for logic programs. Master’s thesis, Universidade Nova de Lisboa (February 2005)
Soares, L.: Revising undefinedness in the well-founded semantics of logic programs. Master’s thesis, Universidade Nova de Lisboa (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pereira, L.M., Pinto, A.M. (2007). Approved Models for Normal Logic Programs. In: Dershowitz, N., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2007. Lecture Notes in Computer Science(), vol 4790. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75560-9_33
Download citation
DOI: https://doi.org/10.1007/978-3-540-75560-9_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75558-6
Online ISBN: 978-3-540-75560-9
eBook Packages: Computer ScienceComputer Science (R0)