Preferential Description Logics | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4790))

Abstract

We extend the Description Logic \(\mathcal{ALC}\) with a “typicality” operator T that allows us to reason about the prototypical properties and inheritance with exceptions. The resulting logic is called \(\mathcal{ALC}+{\bf T}\). The typicality operator is intended to select the “most normal” or “most typical” instances of a concept. In our framework, knowledge bases may then contain, in addition to ordinary ABoxes and TBoxes, subsumption relations of the form “T(C) is subsumed by P”, expressing that typical C-members have the property P. The semantics of a typicality operator is defined by a set of postulates that are strongly related to Kraus-Lehmann-Magidor axioms of preferential logic P. We first show that T enjoys a simple semantics provided by ordinary structures equipped by a preference relation. This allows us to obtain a modal interpretation of the typicality operator. Using such a modal interpretation, we present a tableau calculus for deciding satisfiability of \(\mathcal{ALC}+{\bf T}\) knowledge bases. Our calculus gives a nondeterministic-exponential time decision procedure for satisfiability of \(\mathcal{ALC}+{\bf T}\). We then extend \(\mathcal{ALC}+{\bf T}\) knowledge bases by a nonmonotonic completion that allows inferring defeasible properties of specific concept instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge representation formalisms. J. Autom. Reasoning 14(1), 149–180 (1995)

    Article  MathSciNet  Google Scholar 

  2. Baader, F., Hollunder, B.: Priorities on defaults with prerequisites, and their application in treating specificity in terminological default logic. J. Autom. Reasoning 15(1), 41–68 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bonatti, P.A., Lutz, C., Wolter, F.: Description logics with circumscription. In: Proc. of KR, pp. 400–410 (2006)

    Google Scholar 

  4. Buchheit, M., Donini, F.M., Schaerf, A.: Decidable reasoning in terminological knowledge representation systems. J. Artif. Int. Research (JAIR) 1, 109–138 (1993)

    MATH  MathSciNet  Google Scholar 

  5. Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W., Schaerf, A.: An epistemic operator for description logics. Artif. Intell. 100(1-2), 225–274 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and negation as failure. ACM Trans. Comput. Log. 3(2), 177–225 (2002)

    Article  MathSciNet  Google Scholar 

  7. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the semantic web. In: Proc. of KR, pp. 141–151 (2004)

    Google Scholar 

  8. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Analytic Tableaux Calculi for KLM Rational Logic R. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 190–202. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Analytic Tableaux for KLM Preferential and Cumulative Logics. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 666–681. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Giugno, R., Lukasiewicz, T.: P-\(\mathcal{SHOQ}\)(D): A Probabilistic Extension of \(\mathcal{SHOQ}\)(D) for Probabilistic Ontologies in the Semantic Web. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 86–97. Springer, Heidelberg (2002)

    Google Scholar 

  11. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44(1-2), 167–207 (1990)

    Article  MathSciNet  Google Scholar 

  12. Straccia, U.: Default inheritance reasoning in hybrid kl-one-style logics. In: Proc. of IJCAI, pp. 676–681 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nachum Dershowitz Andrei Voronkov

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L. (2007). Preferential Description Logics. In: Dershowitz, N., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2007. Lecture Notes in Computer Science(), vol 4790. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75560-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75560-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75558-6

  • Online ISBN: 978-3-540-75560-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics