Abstract
We extend the Description Logic \(\mathcal{ALC}\) with a “typicality” operator T that allows us to reason about the prototypical properties and inheritance with exceptions. The resulting logic is called \(\mathcal{ALC}+{\bf T}\). The typicality operator is intended to select the “most normal” or “most typical” instances of a concept. In our framework, knowledge bases may then contain, in addition to ordinary ABoxes and TBoxes, subsumption relations of the form “T(C) is subsumed by P”, expressing that typical C-members have the property P. The semantics of a typicality operator is defined by a set of postulates that are strongly related to Kraus-Lehmann-Magidor axioms of preferential logic P. We first show that T enjoys a simple semantics provided by ordinary structures equipped by a preference relation. This allows us to obtain a modal interpretation of the typicality operator. Using such a modal interpretation, we present a tableau calculus for deciding satisfiability of \(\mathcal{ALC}+{\bf T}\) knowledge bases. Our calculus gives a nondeterministic-exponential time decision procedure for satisfiability of \(\mathcal{ALC}+{\bf T}\). We then extend \(\mathcal{ALC}+{\bf T}\) knowledge bases by a nonmonotonic completion that allows inferring defeasible properties of specific concept instances.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge representation formalisms. J. Autom. Reasoning 14(1), 149–180 (1995)
Baader, F., Hollunder, B.: Priorities on defaults with prerequisites, and their application in treating specificity in terminological default logic. J. Autom. Reasoning 15(1), 41–68 (1995)
Bonatti, P.A., Lutz, C., Wolter, F.: Description logics with circumscription. In: Proc. of KR, pp. 400–410 (2006)
Buchheit, M., Donini, F.M., Schaerf, A.: Decidable reasoning in terminological knowledge representation systems. J. Artif. Int. Research (JAIR) 1, 109–138 (1993)
Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W., Schaerf, A.: An epistemic operator for description logics. Artif. Intell. 100(1-2), 225–274 (1998)
Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and negation as failure. ACM Trans. Comput. Log. 3(2), 177–225 (2002)
Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the semantic web. In: Proc. of KR, pp. 141–151 (2004)
Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Analytic Tableaux Calculi for KLM Rational Logic R. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 190–202. Springer, Heidelberg (2006)
Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Analytic Tableaux for KLM Preferential and Cumulative Logics. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 666–681. Springer, Heidelberg (2005)
Giugno, R., Lukasiewicz, T.: P-\(\mathcal{SHOQ}\)(D): A Probabilistic Extension of \(\mathcal{SHOQ}\)(D) for Probabilistic Ontologies in the Semantic Web. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 86–97. Springer, Heidelberg (2002)
Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44(1-2), 167–207 (1990)
Straccia, U.: Default inheritance reasoning in hybrid kl-one-style logics. In: Proc. of IJCAI, pp. 676–681 (1993)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L. (2007). Preferential Description Logics. In: Dershowitz, N., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2007. Lecture Notes in Computer Science(), vol 4790. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75560-9_20
Download citation
DOI: https://doi.org/10.1007/978-3-540-75560-9_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75558-6
Online ISBN: 978-3-540-75560-9
eBook Packages: Computer ScienceComputer Science (R0)