Abstract
In this paper we consider learnability in some special numberings, such as Friedberg numberings, which contain all the recursively enumerable languages, but have simpler grammar equivalence problem compared to acceptable numberings. We show that every explanatorily learnable class can be learnt in some Friedberg numbering. However, such a result does not hold for behaviourally correct learning or finite learning. One can also show that some Friedberg numberings are so restrictive that all classes which can be explanatorily learnt in such Friedberg numberings have only finitely many infinite languages. We also study similar questions for several properties of learners such as consistency, conservativeness, prudence, iterativeness and non U-shaped learning. Besides Friedberg numberings, we also consider the above problems for programming systems with K-recursive grammar equivalence problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Angluin, D.: Finding patterns common to a set of strings. Journal of Computer and System Sciences 21, 46–62 (1980)
Angluin, D.: Inductive inference of formal languages from positive data. Information and Control 45, 117–135 (1980)
Baliga, G., Case, J., Merkle, W., Stephan, F., Wiehagen, R.: When unlearning helps. Technical Report Technical Report TRA5/06, School of Computing, National University of Singapore (2005)
Bārzdin, J.: Inductive inference of automata, functions and programs. In: International Congress of Mathematicians, Vancouver, pp. 771–776 (1974)
Blum, L., Blum, M.: Toward a mathematical theory of inductive inference. Information and Control 28, 125–155 (1975)
Blum, M.: A machine-independent theory of the complexity of recursive functions. Journal of the ACM 14, 322–336 (1967)
Carlucci, L., Case, J., Jain, S., Stephan, F.: U-shaped learning may be necessary. Journal of Computer and System Sciences (to appear)
Carlucci, L., Jain, S., Kinber, E., Stephan, F.: Variations on U-shaped learning. Information and Computation 204(8), 1264–1294 (2006)
Case, J.: The power of vacillation in language learning. SIAM Journal on Computing 28(6), 1941–1969 (1999)
Case, J., Lynes, C.: Machine inductive inference and language identification. In: Nielsen, M., Schmidt, E.M. (eds.) Proceedings of the 9th International Colloquium on Automata, Languages and Programming. LNCS, vol. 140, pp. 107–115. Springer, Heidelberg (1982)
Friedberg, R.: Three theorems on recursive enumeration. Journal of Symbolic Logic 23(3), 309–316 (1958)
Wiehagen, R., Kinber, E., Freivalds, R.: Inductive Inference and Computable One-one Numberings. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 28, 463–479 (1982)
Fulk, M.: Prudence and other conditions on formal language learning. Information and Computation 85, 1–11 (1990)
Gold, E.M.: Language identification in the limit. Information and Control 10, 447–474 (1967)
Goncharov, S.: Nonequivalent constructivizations. In: Proceedings of the Mathematical Institute, Siberian Branch of Russian Academy of Sciences, Nauka, Novosibirsk (1982)
Jain, S., Osherson, D., Royer, J., Sharma, A.: Systems that Learn: An Introduction to Learning Theory, 2nd edn. MIT Press, Cambridge (1999)
Jain, S., Sharma, A.: Characterizing language learning in terms of computable numberings. Annals of Pure and Applied Logic 84(1), 51–72 (1997), Special issue on Asian Logic Conference (1993)
Jantke, K.-P.: Monotonic and non-monotonic inductive inference. New Generation Computing 8, 349–360 (1991)
Jantke, K.-P., Beick, H.-R.: Combining postulates of naturalness in inductive inference. Journal of Information Processing and Cybernetics (EIK) 17, 465–484 (1981)
Kummer, M.: Beiträge zur Theorie der Numerierungen: Eindeutige Numerierungen. PhD Thesis, Karlsruhe (1989)
Odifreddi, P.: Classical Recursion Theory, North-Holland, Amsterdam (1989)
Osherson, D., Stob, M., Weinstein, S.: Systems that Learn: An Introduction to Learning Theory for Cognitive and Computer Scientists. MIT Press, Cambridge (1986)
Osherson, D., Weinstein, S.: Criteria of language learning. Information and Control 52, 123–138 (1982)
Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1967), (Reprinted by MIT Press in 1987)
Schäfer-Richter, G.: Some results in the theory of effective program synthesis - learning by defective information. In: Bibel, W., Jantke, K.P. (eds.) Mathematical Methods of Specification and Synthesis of Software Systems 1985. LNCS, vol. 215, pp. 219–225. Springer, Heidelberg (1986)
Wexler, K., Culicover, P.W.: Formal Principles of Language Acquisition. MIT Press, Cambridge (1980)
Wiehagen, R.: Limes-Erkennung rekursiver Funktionen durch spezielle Strategien. Journal of Information Processing and Cybernetics (EIK) 12, 93–99 (1976)
Wiehagen, R.: A thesis in inductive inference. In: Dix, J., Schmitt, P.H., Jantke, K.P. (eds.) Nonmonotonic and Inductive Logic, 1st International Workshop. LNCS, vol. 543, pp. 184–207. Springer, Heidelberg (1991)
Wiehagen, R., Liepe, W.: Charakteristische Eigenschaften von erkennbaren Klassen rekursiver Funktionen. Journal of Information Processing and Cybernetics (EIK) 12, 421–438 (1976)
Zeugmann, T., Lange, S.: A guided tour across the boundaries of learning recursive languages. In: Lange, S., Jantke, K.P. (eds.) Algorithmic Learning for Knowledge-Based Systems. LNCS, vol. 961, pp. 190–258. Springer, Heidelberg (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jain, S., Stephan, F. (2007). Learning in Friedberg Numberings. In: Hutter, M., Servedio, R.A., Takimoto, E. (eds) Algorithmic Learning Theory. ALT 2007. Lecture Notes in Computer Science(), vol 4754. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75225-7_10
Download citation
DOI: https://doi.org/10.1007/978-3-540-75225-7_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75224-0
Online ISBN: 978-3-540-75225-7
eBook Packages: Computer ScienceComputer Science (R0)