Evolving Complex Neural Networks | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4733))

Included in the following conference series:

Abstract

Complex networks like the scale-free model proposed by Barabasi-Albert are observed in many biological systems and the application of this topology to artificial neural network leads to interesting considerations. In this paper, we present a preliminary study on how to evolve neural networks with complex topologies. This approach is utilized in the problem of modeling a chemical process with the presence of unknown inputs (disturbance). The evolutionary algorithm we use considers an initial population of individuals with differents scale-free networks in the genotype and at the end of the algorithm we observe and analyze the topology of networks with the best performances. Experimentation on modeling a complex chemical process shows that performances of networks with complex topology are similar to the feed-forward ones but the analysis of the topology of the most performing networks leads to the conclusion that the distribution of input node information affects the network performance (modeling capability).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yao, X.: Evolving Artificial Neural Networks. Proceedings of the IEEE 87(9), 1423–1447 (1999)

    Article  Google Scholar 

  2. Alander, J.T.: An indexed bibliography of genetic algorithms and neural networks, Technical Report 94-1-NN, University of Vaasa, Department of Information Technology and Production Economics (1998)

    Google Scholar 

  3. Cant-Paz, E., Kamath, C.: An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 915–927 (2005)

    Google Scholar 

  4. Watts, D.J., Strogatz, S.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  5. Burns, G.A.P.C., Oung, M.P.Y: Analysis of the connectional organization of neural systems associated with the hippocampus in rats. Philosophical Transactions of the Royal Society B: Biological Sciences 355(1393), 55–70 (2000)

    Article  Google Scholar 

  6. Eguiluz, V.M., Chialvo, D.R., Cecchi, G.A., Baliki, M., Apkarian, A.V.: Scale-Free Brain Functional Networks. Phys. Rev. Lett. 94, 18–102 (2005)

    Article  Google Scholar 

  7. Dorogotvsev, S.N., Mendes, J.F.F.: Evolution of Networks. Advances in Physics 51(4), 1079–1187 (2002)

    Article  Google Scholar 

  8. Barabasi, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  9. Erdos, P., Renyi, A.: On random graphs, Publ. Math. Debrecen (1959)

    Google Scholar 

  10. Watts, D.J.: Small Worlds: The Dynamics of Networks Between Order and Randomness. Princeton University Press (1999)

    Google Scholar 

  11. Coven, R., Havlin, S., ben-Avraham, D.: Structural Properties of Scale-Free Networks. In: Bornholdt, S., Schuster, H.G. (eds.) Handbook of graphs and networks, ch. 4, Wiley-VCH, Chichester (2002)

    Google Scholar 

  12. Jeong, H., Neda, Z., Barabasi, A.-L.: Measuring preferential attachment for evolving networks. Euro. Phys. Lett. 61, 567 (2003)

    Article  Google Scholar 

  13. Langton, C.: Artificial Life. Addison-Wesley, Redwood City/CA, USA (1989)

    Google Scholar 

  14. Annunziato, M., Bertini, I., Lucchetti, M., Pannicelli, A., Pizzuti, S.: Adaptivity of Artificial Life Environment for On-Line Optimization of Evolving Dynamical Systems. In: Proc. EUNITE 2001, Tenerife, Spain (2001)

    Google Scholar 

  15. Annunziato, M., Bertini, I., Pannicelli, A., Pizzuti, S., Tsimring, L.: Complexity and Control of Combustion Processes in Industry. In: Proc. of CCSI 2000 Complexity and Complex System in Industry, Warwick, UK (2000)

    Google Scholar 

  16. Annunziato, M., Lucchetti, M., Orsini, G., Pizzuti, S.: Artificial life and on-line flows optimisation in energy networks. In: IEEE Swarm Intelligence Sympusium, Pasadena (CA), IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  17. Annunziato, M., Bertini, I., Pannicelli, A., Pizzuti, S.: A Nature-inspired-Modeling-Optimization-Control system applied to a waste incinerator plant. In: 2nd European Symposium NiSIS’06, Puerto de la Cruz, Tenerife (Spain) (2006)

    Google Scholar 

  18. Annunziato, M., Bertini, I., Pannicelli, A., Pizzuti, S.: Evolutionary Control and On-Line Optimization of an MSWC Energy Process. Journal of Systemics, Cybernetics and Informatics 4(4) (2006)

    Google Scholar 

  19. Annunziato, M., Bertini, I., Iannone, R., Pizzuti, S.: Evolving feed-forward neural networks through evolutionary mutation parameters. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS, vol. 4224, pp. 554–561. Springer, Heidelberg (2006)

    Google Scholar 

  20. Annunziato, M., Bruni, C., Lucchetti, M., Pizzuti, S.: Artificial life approach for continuous optimisation of non stationary dynamical systems. Integrated Computer-Aided Engineering 10(2), 111–125 (2003)

    Google Scholar 

  21. Russo, L.P., Bequette, B.W.: Impact of process design on the multiplicity behaviour of a jacketed exothermic CSTR. AIChE Journal 41, 135–147 (1995)

    Article  Google Scholar 

  22. Saraf, V.S., Bequette, B.W.: Auto-tuning of cascade controlled open-loop unstable reactors. In: American Control Conference, Proceedings of the 2001, vol. 3, pp. 2021–2026 (2026)

    Google Scholar 

  23. Russo, L.P., Bequette, B.W.: State-Space versus Input/Output Representations for Cascade Control of Unstable Systems. Ind. Eng. Chem. Res. 36(6), 2271–2278 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roberto Basili Maria Teresa Pazienza

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Annunziato, M., Bertini, I., De Felice, M., Pizzuti, S. (2007). Evolving Complex Neural Networks. In: Basili, R., Pazienza, M.T. (eds) AI*IA 2007: Artificial Intelligence and Human-Oriented Computing. AI*IA 2007. Lecture Notes in Computer Science(), vol 4733. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74782-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74782-6_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74781-9

  • Online ISBN: 978-3-540-74782-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics