Recurrent Bayesian Reasoning in Probabilistic Neural Networks | SpringerLink
Skip to main content

Recurrent Bayesian Reasoning in Probabilistic Neural Networks

  • Conference paper
Artificial Neural Networks – ICANN 2007 (ICANN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4668))

Included in the following conference series:

Abstract

Considering the probabilistic approach to neural networks in the framework of statistical pattern recognition we assume approximation of class-conditional probability distributions by finite mixtures of product components. The mixture components can be interpreted as probabilistic neurons in neurophysiological terms and, in this respect, the fixed probabilistic description becomes conflicting with the well known short-term dynamic properties of biological neurons. We show that some parameters of PNN can be “released” for the sake of dynamic processes without destroying the statistically correct decision making. In particular, we can iteratively adapt the mixture component weights or modify the input pattern in order to facilitate the correct recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baram, Y.: Bayesian classification by iterated weighting. Neurocomputing 25, 73–79 (1999)

    Article  MATH  Google Scholar 

  2. Grim, J.: On numerical evaluation of maximum - likelihood estimates for finite mixtures of distributions. Kybernetika 18, 173–190 (1982)

    MATH  Google Scholar 

  3. Grim, J.: Maximum-likelihood design of layered neural networks. In: International Conference on Pattern Recognition. Proceedings, pp. 85–89. IEEE Computer Society Press, Los Alamitos (1996)

    Chapter  Google Scholar 

  4. Grim, J.: Design of multilayer neural networks by information preserving transforms. In: Pessa, E., Penna, M.P., Montesanto, A. (eds.) Third European Congress on Systems Science, pp. 977–982. Edizioni Kappa, Roma (1996)

    Google Scholar 

  5. Grim, J.: Information approach to structural optimization of probabilistic neural networks. In: Ferrer, L., Caselles, A. (eds.) Fourth European Congress on Systems Science, pp. 527–539. SESGE, Valencia (1999)

    Google Scholar 

  6. Grim, J.: A sequential modification of EM algorithm. In: Gaul, W., Locarek-Junge, H. (eds.) Classification in the Information Age. Studies in Classif., Data Anal., and Knowl. Organization, pp. 163–170. Springer, Berlin (1999)

    Google Scholar 

  7. Grim, J., Vejvalková, J.: An iterative inference mechanism for the probabilistic expert system PES. International Journal of General Systems 27, 373–396 (1999)

    Article  MATH  Google Scholar 

  8. Grim, J., Just, P., Pudil, P.: Strictly modular probabilistic neural networks for pattern recognition. Neural Network World 13, 599–615 (2003)

    Google Scholar 

  9. Grim, J., Kittler, J., Pudil, P., Somol, P.: Combining multiple classifiers in probabilistic neural networks. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 157–166. Springer, Heidelberg (2000)

    Google Scholar 

  10. Grim, J., Kittler, J., Pudil, P., Somol, P.: Multiple classifier fusion in probabilistic neural networks. Pattern Analysis & Applications 5, 221–233 (2002)

    Article  MATH  Google Scholar 

  11. Grim, J., Pudil, P., Somol, P.: Recognition of handwritten numerals by structural probabilistic neural networks. In: Bothe, H., Rojas, R. (eds.) Proceedings of the Second ICSC Symposium on Neural Computation, pp. 528–534. ICSC, Wetaskiwin (2000)

    Google Scholar 

  12. Grim, J., Pudil, P., Somol, P.: Boosting in probabilistic neural networks. In: Kasturi, R., Laurendeau, D., Suen, C. (eds.) Proc. 16th International Conference on Pattern Recognition, pp. 136–139. IEEE Comp. Soc, Los Alamitos (2002)

    Google Scholar 

  13. Haykin, S.: Neural Networks: a comprehensive foundation. Morgan Kaufman, San Mateo, CA (1993)

    Google Scholar 

  14. Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory. Wiley, New York (1949)

    Google Scholar 

  15. Hertz, J., Krogh, A., Palmer, R.G.: Introduction to the Theory of Neural Computation. Addison-Wesley, New York, Menlo Park CA, Amsterdam (1991)

    Google Scholar 

  16. McLachlan, G.J., Peel, D.: Finite Mixture Models. John Wiley and Sons, New York, Toronto (2000)

    MATH  Google Scholar 

  17. Schlesinger, M.I.: Relation between learning and self-learning in pattern recognition (in Russian). Kibernetika (Kiev) 6, 81–88 (1968)

    Google Scholar 

  18. Specht, D.F.: Probabilistic neural networks for classification, mapping or associative memory. In: Proc. of the IEEE Intternational Conference on Neural Networks, vol. I, pp. 525–532. IEEE Computer Society Press, Los Alamitos (1988)

    Chapter  Google Scholar 

  19. Streit, L.R., Luginbuhl, T.E.: Maximum-likelihood training of probabilistic neural networks. IEEE Trans. on Neural Networks 5, 764–783 (1994)

    Article  Google Scholar 

  20. Vajda, I., Grim, J.: About the maximum information and maximum likelihood principles in neural networks. Kybernetika 34, 485–494 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joaquim Marques de Sá Luís A. Alexandre Włodzisław Duch Danilo Mandic

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grim, J., Hora, J. (2007). Recurrent Bayesian Reasoning in Probabilistic Neural Networks. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds) Artificial Neural Networks – ICANN 2007. ICANN 2007. Lecture Notes in Computer Science, vol 4668. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74690-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74690-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74689-8

  • Online ISBN: 978-3-540-74690-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics