Color Image Segmentation Based on Type-2 Fuzzy Sets and Region Merging | SpringerLink
Skip to main content

Color Image Segmentation Based on Type-2 Fuzzy Sets and Region Merging

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4678))

Abstract

This paper focuses on application of fuzzy sets of type 2 (FS2) in color images segmentation. The proposed approach is based on FS2 entropy application and region merging. Both local and global information of the image are employed and FS2 makes it possible to take into account the total uncertainty inherent to the segmentation operation. Fuzzy entropy is utilized as a tool to perform histogram analysis to find all major homogeneous regions at the first stage. Then a basic and fast region merging process, based on color similarity and reduction of small clusters, is carried out to avoid oversegmentation. The experimental results demonstrate that this method is suitable to find homogeneous regions for natural images, even for noisy images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Meyer, F.: Topographic distance and watershed lines. Signal Processing 38, 113–125 (1994)

    Article  MATH  Google Scholar 

  2. Bigand, A., Bouwmans, T., Dubus, J.P.: Extraction of line segments from fuzzy images. Pattern Recognition Letters 22, 1405–1418 (2001)

    Article  MATH  Google Scholar 

  3. Demirci, R.: Rule-based automatic segmentation of color images. Int. J. Electron. Commun. 60, 435–442 (2006)

    Article  Google Scholar 

  4. Cheng, H., Jiang, X., Wang, J.: Color image segmentation based on homogram thresholding and region merging. Pattern Recognition 35(2), 373–393 (2002)

    Article  MATH  Google Scholar 

  5. Chen, T.Q., Lu, Y.: Color image segmentation- an innovative approach. Pattern Recognition 35, 395–405 (2002)

    Article  MATH  Google Scholar 

  6. Trémeau, A., Colantoni, P.: Regions adjencency graph applied to color image segmentation. IEEE Trans. Image Process 9(4), 735–744 (2000)

    Article  Google Scholar 

  7. Hagras, H.A.: A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Trans. on Fuzzy Systems 12(4), 524–539 (2004)

    Article  Google Scholar 

  8. Wu, H., Mendel, J.M.: Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems. IEEE Trans. on Fuzzy Systems 10(5), 622–639 (2002)

    Article  Google Scholar 

  9. Prados-Suarez, B., Chamorro-Martinez, J., Sanchez, D., Abad, J.: Region-based fit of color homogeneity measures for fuzzy image segmentation. Fuzzy Sets and Systems 158, 215–229 (2007)

    Article  Google Scholar 

  10. Fan, J.-L., Ma, Y.-L.: Some new fuzzy entropy formulas. Fuzzy Sets and Systems 128, 277–284 (2002)

    Article  MATH  Google Scholar 

  11. Liang, Q., Karnish, N.N., Mendel, J.M.: Connection admission control in ATM networks using survey-based type-2 fuzzy logic systems. IEEE Trans. on Systems, Man and Cyber. 30(3), 329–339 (2000)

    Article  Google Scholar 

  12. Auephanwiriyakul, S., Keller, J.M., Gader, P.D.: Generalized Choquet Fuzzy Integral Fusion. Information Fusion 3 (2002)

    Google Scholar 

  13. Taleb-Ahmed, A., Bigand, A., Lethuc, V., Allioux, P.M.: Visual acuity of vision tested by fuzzy logic: an application in ophthalmology as a step towards a telemedicine project. Information Fusion 5, 217–230 (2004)

    Article  Google Scholar 

  14. Cheng, H.D., Chen, C.H., Chiu, H.H., Xu, H.J.: Fuzzy homogeneity approach to multilevel thresholding. IEEE Trans. Image Process 7(7), 1084–1088 (1998)

    Article  Google Scholar 

  15. Philipp-Foliguet, S., Vieira, M.B., Sanfourche, M.: Fuzzy segmentation of fuzzy images and indexing of fuzzy regions. In: CGVIP 2002, Brazil (2002)

    Google Scholar 

  16. Rhee, F., Hwang, C.: An interval type-2 fuzzy k-nearest neighbor. In: Proc. Int. Conf. Fuzzy Syst. vol. 2, pp. 802–807 (May 2003)

    Google Scholar 

  17. Hwang, C., Rhee, F.: An interval type-2 fuzzy C spherical shells algorithm. In: Proc. Int. Conf. Fuzzy Syst. vol. 2, pp. 1117–1122 (May 2004)

    Google Scholar 

  18. Mendel, J.M., Bob John, R.I.: Type-2 fuzzy sets made simple. IEEE Trans. on Fuzzy Systems 10(02), 117–127 (2002)

    Article  Google Scholar 

  19. Mendel, J.M., Bob John, R.I., Liu, F.: Interval Type-2 Fuzzy Logic Systems made simple. IEEE Trans. on Fuzzy Systems 14(06), 808–821 (2006)

    Article  Google Scholar 

  20. Mendel, J.M., Wu, H.: Type-2 Fuzzistics for symmetric Interval Type-2 Fuzzy Sets: Part1, Forward problems. IEEE Trans. on Fuzzy Systems 14(06), 781–792 (2006)

    Article  Google Scholar 

  21. Mendel, J.M.: Advances in type-2 fuzzy sets and systems. Information Sciences 177, 84–110 (2007)

    Article  MATH  Google Scholar 

  22. Finlayson, G.D.: Color in perspective. IEEE Trans. on PAMI 18(10), 1034–1035 (1996)

    Google Scholar 

  23. Bloch, I.: Information combination operators for data fusion: a comparative review with classification. IEEE Trans. on SMC 26, 52–67 (1996)

    Google Scholar 

  24. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Information Sciences 8, 199–249 (1975)

    Article  Google Scholar 

  25. Yager, R.R.: On the measure of fuzzyness and negation. Int. J. Gen. Sys. 5, 221–229 (1979)

    MATH  Google Scholar 

  26. Kaufmann, A.: Introduction to the theory of fuzzy set - Fundamental theorical elements. Academic Press, New York (1975)

    Google Scholar 

  27. Pal, N.R., Bezdek, J.C.: Measures of fuzzyness: a review and several classes. Van Nostrand Reinhold, New York (1994)

    Google Scholar 

  28. Deluca, A., Termini, S.: A definition of a nonprobabilistic entropy in the setting of fuzzy set theory. Information and Control 20(4), 301–312 (1972)

    Article  Google Scholar 

  29. Klir, G.J., Yuan, B.: Fuzzy sets and fuzzy logic. Theory and applications. Prentice-Hall, Englewood Cliffs (1995)

    MATH  Google Scholar 

  30. Tizhoosh, H.R.: Image thresholding using type 2 fuzzy sets. Pattern Recognition 38, 2363–2372 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Blanc-Talon Wilfried Philips Dan Popescu Paul Scheunders

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tehami, S., Bigand, A., Colot, O. (2007). Color Image Segmentation Based on Type-2 Fuzzy Sets and Region Merging. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2007. Lecture Notes in Computer Science, vol 4678. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74607-2_86

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74607-2_86

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74606-5

  • Online ISBN: 978-3-540-74607-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics