Adaptive Image Restoration Based on Local Robust Blur Estimation | SpringerLink
Skip to main content

Adaptive Image Restoration Based on Local Robust Blur Estimation

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4678))

Abstract

This paper presents a novel non-iterative method to restore the out-of-focus part of an image. The proposed method first applies a robust local blur estimation to obtain a blur map of the image. The estimation uses the maximum of difference ratio between the original image and its two digitally re-blurred versions to estimate the local blur radius. Then adaptive least mean square filters based on the local blur radius and the image structure are applied to restore the image and to eliminate the sensor noise. Experimental results have shown that despite its low complexity the proposed method has a good performance at reducing spatially varying blur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lagendijk, R.L., Biemond, J., Boekee, D.E.: Identification and restoration of noisy blurred image using the expectation-maximization algorithm. IEEE Trans. Acoustic, Speech and Signal Processing 38, 1180–1191 (1990)

    Article  MATH  Google Scholar 

  2. Elder, J.H., Zucker, S.W.: Local Scale Control for Edge Detection and Blur Estimation. IEEE Trans. Pattern Analysis and Machine Intelligence 20, 699–716 (1998)

    Article  Google Scholar 

  3. Kim, S.K., Park, S.R., Paik, J.K.: Simultaneous out-of-focus blur estimation and restoration for digital auto-focusing system. IEEE Trans. Consumer Electronics 34, 1071–1075 (1998)

    Article  Google Scholar 

  4. Hu, H., de Haan, G.: Low cost robust blur estimator. In: Proceedings of IEEE Int. Conf. on Image Processing, Atlanta (GA), October 8-11, 2006, pp. 617–620. IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  5. Hu, H., de Haan, G.: Simultaneous Coding Artifact Reduction and Sharpness Enhancement. In: Proceedings of IEEE Int. Conf. on Consumer Electronics, Las Vegas, pp. 213–214. IEEE Computer Society Press, Los Alamitos (2007)

    Google Scholar 

  6. Katsaggelos, A.K.: Iterative image restoration algorithms. Optical Engineering 287, 735–748 (1989)

    Google Scholar 

  7. Kondo, T., Fujimori, Y., Ghosal, S., Carrig, J.J.: Method and apparatus for adaptive filter tap selection according to a class, US-Patent: US 6,192,161 B1 (February 20, 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Blanc-Talon Wilfried Philips Dan Popescu Paul Scheunders

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hu, H., de Haan, G. (2007). Adaptive Image Restoration Based on Local Robust Blur Estimation. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2007. Lecture Notes in Computer Science, vol 4678. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74607-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74607-2_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74606-5

  • Online ISBN: 978-3-540-74607-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics