Approximate Interpolation by Neural Networks with the Inverse Multiquadric Functions | SpringerLink
Skip to main content

Approximate Interpolation by Neural Networks with the Inverse Multiquadric Functions

  • Conference paper
Advances in Computation and Intelligence (ISICA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4683))

Included in the following conference series:

  • 1505 Accesses

Abstract

For approximate interpolation, a type of single-hidden layer feedforward neural networks with the inverse multiquadric activation function is presented in this paper. We give a new and quantitative proof of the fact that a single layer neural networks with n + 1 hidden neurons can learn n + 1 distinct samples with zero error. Based on this result, approximate interpolants are given. They can approximate interpolate, with arbitrary precision, any set of distinct data in one or several dimensions. They can uniformly approximate any C 1 continuous function of one variable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Huang, G.B., Babri, H.A.: Feedforward neural networks with arbitrary bounded nonlinear activation functions. IEEE Trans. Neural Networks 9(1), 224–229 (1998)

    Article  Google Scholar 

  2. Sartori, M.A., Antsaklis, P.J.: A simple method to derive bounds on the size and to train multilayer neural networks. IEEE Trans. Neural Networks 2(4), 467–471 (1991)

    Article  Google Scholar 

  3. Tamura, S., Tateishi, M.: Capabilities of a four-layered feedforward neural network. IEEE Trans. Neural Networks 8(2), 251–255 (1997)

    Article  Google Scholar 

  4. Barhen, J., Cogswell, R., Protopopescu, V.: Single iteration training algorithm for multilayer feedforward neural networks. Neural Process. Lett. 11, 113–129 (2000)

    Article  Google Scholar 

  5. Li, X.: Interpolation by ridge polynomials and its application in neural networks. J. Comput. Appl. Math. 144, 197–209 (2002)

    Article  MATH  Google Scholar 

  6. Sontag, E.D.: Feedforward nets for interpolation and classification. J. Comp. Syst. Sci. 45, 20–48 (1992)

    Article  MATH  Google Scholar 

  7. Chui, C.K., Li, X., Mhaskar, H.N.: Neural networks for localized approximation. Mathematics of Computation 63, 607–623 (1994)

    Article  MATH  Google Scholar 

  8. Chui, C.K., Li, X., Mhaskar, H.N.: Limitations of the approximation capabilities of neural networks with one hidden layer. Adv. Comput. Math. 5, 233–243 (1996)

    Article  MATH  Google Scholar 

  9. Debao, C.: Degree of approximation by superpositions of a sigmoidal function. Approx. Theory & its Appl. 9, 17–28 (1993)

    MATH  Google Scholar 

  10. Mhaskar, H.N., Michelli, C.A.: Approximation by superposition of sigmoidal and radial basis functions. Adv. Appl. Math. 13, 350–373 (1992)

    Article  MATH  Google Scholar 

  11. Lianas, B., Sainz, F.J.: Constructive approximate interpolation by neural networks. J. Comput. Appl. Math. 188, 283–308 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lishan Kang Yong Liu Sanyou Zeng

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Han, X. (2007). Approximate Interpolation by Neural Networks with the Inverse Multiquadric Functions. In: Kang, L., Liu, Y., Zeng, S. (eds) Advances in Computation and Intelligence. ISICA 2007. Lecture Notes in Computer Science, vol 4683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74581-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74581-5_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74580-8

  • Online ISBN: 978-3-540-74581-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics