Kolmogorov Complexity, Lovász Local Lemma and Critical Exponents | SpringerLink
Skip to main content

Kolmogorov Complexity, Lovász Local Lemma and Critical Exponents

  • Conference paper
Computer Science – Theory and Applications (CSR 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4649))

Included in the following conference series:

Abstract

D. Krieger and J. Shallit have proved that every real number greater than 1 is a critical exponent of some sequence [1]. We show how this result can be derived from some general statements about sequences whose subsequences have (almost) maximal Kolmogorov complexity. In this way one can also construct a sequence that has no “approximate” fractional powers with exponent that exceeds a given value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Krieger, D., Shallit, J.: Every real number greater than 1 is a critical exponent (preprint, 2007)

    Google Scholar 

  2. Yu. Rumyantsev, A., Ushakov, M.A.: Forbidden Substrings, Kolmogorov Complexity and Almost Periodic Sequences. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 396–407. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its Applications, 2nd edn. Springer, NY (1997)

    MATH  Google Scholar 

  4. Motwani, R., Raghavan, P.: Randomized algorithms. Cambridge University Press, New York (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Volker Diekert Mikhail V. Volkov Andrei Voronkov

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rumyantsev, A.Y. (2007). Kolmogorov Complexity, Lovász Local Lemma and Critical Exponents. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds) Computer Science – Theory and Applications. CSR 2007. Lecture Notes in Computer Science, vol 4649. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74510-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74510-5_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74509-9

  • Online ISBN: 978-3-540-74510-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics