Abstract
D. Krieger and J. Shallit have proved that every real number greater than 1 is a critical exponent of some sequence [1]. We show how this result can be derived from some general statements about sequences whose subsequences have (almost) maximal Kolmogorov complexity. In this way one can also construct a sequence that has no “approximate” fractional powers with exponent that exceeds a given value.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Krieger, D., Shallit, J.: Every real number greater than 1 is a critical exponent (preprint, 2007)
Yu. Rumyantsev, A., Ushakov, M.A.: Forbidden Substrings, Kolmogorov Complexity and Almost Periodic Sequences. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 396–407. Springer, Heidelberg (2006)
Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its Applications, 2nd edn. Springer, NY (1997)
Motwani, R., Raghavan, P.: Randomized algorithms. Cambridge University Press, New York (1995)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rumyantsev, A.Y. (2007). Kolmogorov Complexity, Lovász Local Lemma and Critical Exponents. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds) Computer Science – Theory and Applications. CSR 2007. Lecture Notes in Computer Science, vol 4649. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74510-5_35
Download citation
DOI: https://doi.org/10.1007/978-3-540-74510-5_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74509-9
Online ISBN: 978-3-540-74510-5
eBook Packages: Computer ScienceComputer Science (R0)