Abstract
A proteomic analysis system (PAS) for prostate Mass Spectrometry (MS) spectra is proposed for differentiating normal from abnormal and benign from malignant cases and for identifying biomarkers related to prostate cancer. PAS comprised two stages, 1/a pre-processing stage, consisting of MS-spectrum smoothing, normalization, iterative peak selection, and peak alignment, and 2/a classification stage, comprising a 2-level hierarchical tree structure, employing the PNN and SVM classifiers at the 1st (normal-abnormal) and 2nd (benign-malignant) classification levels respectively. PAS first applied local thresholding, for determining the MS-spectrum noise level, and second an iterative global threshold estimation algorithm, for selecting peaks at different intensity ranges. Two optimum sub-sets of these peaks, one at each global threshold, were used to optimally design the hierarchical classification scheme and, thus, indicate the best m/z values. The information rich biomarkers 1160.8, 2082.2, 3595.9, 4275.3, 5817.3, 7653.2, that have been associated with the prostate gland, are proposed for further investigation.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
McDavid, K., Lee, J., Fulton, J.P., Tonita, J., Thompson, T.D.: Prostate cancer incidence and mortality rates and trends in the united states and canada. Public Health Rep. 119, 174–186 (2004)
Srinivas, P.R., Srivastava, S., Hanash, S., Wright Jr., G.L.: Proteomics in early detection of cancer. Clin Chem. 47, 1901–1911 (2001)
Hilario, M., Kalousis, A., Pellegrini, C., Muller, M.: Processing and classification of protein mass spectra. Mass Spectrom Rev. 25, 409–449 (2006)
Malyarenko, D.I., Cooke, W.E., Adam, B.L., Malik, G., Chen, H., Tracy, E.R., Trosset, M.W., Sasinowski, M., Semmes, O.J., Manos, D.M.: Enhancement of sensitivity and resolution of surface-enhanced laser desorption/ionization time-of-flight mass spectrometric records for serum peptides using time-series analysis techniques. Clin. Chem. 51, 65–74 (2005)
Jong, K., Marchiori, E., Sebag, M., van der Vaart, A.: Feature selection in proteomic pattern data with support vector machines. In: Proceedings of the (2004) 41
Lilien, R.H., Farid, H., Donald, B.R.: Probabilistic disease classification of expression-dependent proteomic data from mass spectrometry of human serum. J. Comput. Biol. 10, 925–946 (2003)
Petricoin, E.F., Ornstein 3rd, D.K., Paweletz, C.P., Ardekani, A., Hackett, P.S., Hitt, B.A., Velassco, A., Trucco, C., Wiegand, L., Wood, K., Simone, C.B., Levine, P.J., Linehan, W.M., Emmert-Buck, M.R., Steinberg, S.M., Kohn, E.C., Liotta, L.A.: Serum proteomic patterns for detection of prostate cancer. J Natl Cancer Inst. 94, 1576–1578 (2002)
Qu, Y., Adam, B.L., Thornquist, M., Potter, J.D., Thompson, M.L., Yasui, Y., Davis, J., Schellhammer, P.F., Cazares, L., Clements, M., Wright Jr., G.L., Feng, Z.: Data reduction using a discrete wavelet transform in discriminant analysis of very high dimensionality data. Biometrics 59, 143–151 (2003)
Qu, Y., Adam, B.L., Yasui, Y., Ward, M.D., Cazares, L.H., Schellhammer, P.F., Feng, Z., Semmes, O.J., Wright Jr., G.L.: Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. Clin. Chem. 48, 1835–1843 (2002)
Yasui, Y., Pepe, M., Thompson, M.L., Adam, B.L., Wright Jr., G.L., Qu, Y., Potter, J.D., Winget, M., Thornquist, M., Feng, Z.: A data-analytic strategy for protein biomarker discovery: Profiling of high-dimensional proteomic data for cancer detection. Biostatistics 4, 449–463 (2003)
Adam, B.L., Qu, Y., Davis, J.W., Ward, M.D., Clements, M.A., Cazares, L.H., Semmes, O.J., Schellhammer, P.F., Yasui, Y., Feng, Z., Wright Jr., G.L.: Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res. 62, 3609–3614 (2002)
Institute, N.C. (Accessed 24/11/2006) via the INTERNET Available: http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp
Cleveland, W.S.: Robust locally weighted regression and smoothing scatterplots. J. Amer. Statist. Assoc. 74, 829–836 (1979)
Baggerly, K.A., Morris, J.S., Coombes, K.R.: Reproducibility of seldi-tof protein patterns in serum: Comparing datasets from different experiments. Bioinformatics 20, 777–785 (2004)
Specht, D.F.: Probabilistic neural networks. Neural Networks 3, 109–118 (1990)
Christanini, N., Taylor, J.S.: An introduction to support vector machines and other kernelbased learning methods. Cambridge University Press, Cambridge (2000)
Theodorides, S., Koutroumbas, K.: Pattern recognition, 2nd edn. Academic Press, London (2003)
Ressom, H.W., Varghese, R.S., Abdel-Hamid, M., Eissa, S.A., Saha, D., Goldman, L., Petricoin, E.F., Conrads, T.P., Veenstra, T.D., Loffredo, C.A., Goldman, R.: Analysis of mass spectral serum profiles for biomarker selection. Bioinformatics 21, 4039–4045 (2005)
Wang, X., Zhu, W., Pradhan, K., Ji, C., Ma, Y., Semmes, O.J., Glimm, J., Mitchell, J.: Feature extraction in the analysis of proteomic mass spectra. Proteomics 6, 2095–2100 (2006)
ExPASy. (Accessed 05/12/2006), Available via the INTERNET: http://au.expasy.org/tools/
Swanson, T.A., Kim, S.I., Myers, M., Pabon, A., Philibert, K.D., Wang, M., Glucksman, M.J.: The role of neuropeptide processing enzymes in endocrine (prostate) cancer: Ec 3.4.24.15 (ep24.15). Protein Pept Lett. 11, 471–478 (2004)
Hering, F.L., Lipay, M.V., Lipay, M.A., Rodrigues, P.R., Nesralah, L.J., Srougi, M.: Comparison of positivity frequency of bcl-2 expression in prostate adenocarcinoma with low and high gleason score. Sao Paulo Med. J. 119, 138–141 (2001)
Pan, C.X., Kinch, M.S., Kiener, P.A., Langermann, S., Serrero, G., Sun, L., Corvera, J., Sweeney, C.J., Li, L., Zhang, S., Baldridge, L.A., Jones, T.D., Koch, M.O., Ulbright, T.M., Eble, J.N., Cheng, L.: Pc cell-derived growth factor expression in prostatic intraepithelial neoplasia and prostatic adenocarcinoma. Clin Cancer Res. 10, 1333–1337 (2004)
Chan, J.M., Stampfer, M.J., Giovannucci, E., Gann, P.H., Ma, J., Wilkinson, P., Hennekens, C.H., Pollak, M.: Plasma insulin-like growth factor-i and prostate cancer risk: A prospective study. Science 279, 563–566 (1998)
Yu, J.X., Chao, L., Chao, J.: Molecular cloning, tissue-specific expression, and cellular localization of human prostasin mrna. J. Biol. Chem. 270, 13483–13489 (1995)
Adam, B.L., Vlahou, A., Semmes, O.J., Wright Jr., G.L.: Proteomic approaches to biomarker discovery in prostate and bladder cancers. Proteomics 1, 1264–1270 (2001)
Magni, P., Motta, M.: Expression of neuropeptide y receptors in human prostate cancer cells. Ann. Oncol. 12(2), S27–29 (2001)
Ruscica, M., Dozio, E., Boghossian, S., Bovo, G., Martos Riano, V., Motta, M., Magni, P.: Activation of the y1 receptor by neuropeptide y regulates the growth of prostate cancer cells. Endocrinology 147, 1466–1473 (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bougioukos, P., Cavouras, D., Daskalakis, A., Kalatzis, I., Nikiforidis, G., Bezerianos, A. (2007). Biomarker Selection, Employing an Iterative Peak Selection Method, and Prostate Spectra Characterization for Identifying Biomarkers Related to Prostate Cancer. In: Gervasi, O., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2007. ICCSA 2007. Lecture Notes in Computer Science, vol 4707. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74484-9_49
Download citation
DOI: https://doi.org/10.1007/978-3-540-74484-9_49
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74482-5
Online ISBN: 978-3-540-74484-9
eBook Packages: Computer ScienceComputer Science (R0)