A Statistical Approach to the Timing-Yield Optimization of Pipeline Circuits | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4644))

  • 1413 Accesses

Abstract

The continuous miniaturization of semiconductor devices imposes serious threats to design robustness against process variations and environmental fluctuations. Modern circuit designs may suffer from design uncertainties, unpredictable in the design phase or even after manufacturing. This paper presents an optimization technique to make pipeline circuits robust against delay variations and thus maximize timing yield. By trading larger flip-flops for smaller latches, the proposed approach can be used as a post-synthesis or post-layout optimization tool, allowing accurate timing information to be available. Experimental results show an average of 31% timing yield improvement for pipeline circuits. They suggest that our method is promising for high-speed designs and is capable of tolerating clock variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albrecht, C., Korte, B., Schietke, J., Vygen, J.: Cycle time and slack optimization for VLSI-chips. In: Proc. ICCAD, 1999, pp. 232–238 (1999)

    Google Scholar 

  2. Clark, C.E.: The greatest of a finite set of random variables. Operations Research 9(2), 145–162 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chao, C.-T., Wang, L.-C., Cheng, K.-T., Kundu, S.: Static statistical timing analysis for latch-based pipeline designs. In: Proc. ICCAD (2004)

    Google Scholar 

  4. Choi, S.-H., Paul, B., Roy, K.: Novel sizing algorithm for yield improvement under process variation in nanometer technology. In: Proc. DAC (2004)

    Google Scholar 

  5. Chopra, K., Shah, S., Srivastava, A., Blaauw, D., Sylvester, D.: Parametric yield maximization using gate sizing based on efficient statistical power and delay gradient computation. In: Proc. ICCAD (2005)

    Google Scholar 

  6. Guthaus, M., Venkateswaran, N., Visweswariah, C., Zolotov, V.: Gate sizing using incremental parameterized statistical timing analysis. In: Proc. ICCAD (2005)

    Google Scholar 

  7. Hurst, A., Brayton, R.: Computing clock skew schedules under normal process variation. In: Proc. IWLS (2005)

    Google Scholar 

  8. Lalgudi, K., Papaefthymiou, M.: Fixed-phase retiming for low power design. In: Proc. ISLPED (1996)

    Google Scholar 

  9. Lin, H.-M., Jou, J.-Y.: On computing the minimum feedback vertex set of a directed graph by contraction operations. IEEE Trans. on CAD 19(3) (2000)

    Google Scholar 

  10. Neves, J., Friedman, E.: Optimal clock skew scheduling tolerant to process variabtions. In: Proc. DAC, pp. 623–628 (1996)

    Google Scholar 

  11. Raj, S., Vrudhula, S., Wang, J.: A methodology to improve timing yield in the presence of process variations. In: Proc. DAC, pp. 448–453 (2004)

    Google Scholar 

  12. Sakallah, K., Mudge, T., Olukotun, O.: checkT c and minT c : Timing verification and optimal clocking of synchronous digital circuits. In: Proc. ICCAD, 1990, pp. 552–555 (1990)

    Google Scholar 

  13. Sentovish, E.M., et al.: SIS: a system for sequential circuit synthesis. Technical Report UCB/ERL M92/41, UC Berkeley (1992)

    Google Scholar 

  14. Tsai, J.-L., Baik, D., Chen, C.-P., Saluja, K.: A yield improvement methodology using pre- and post-silicon statistical clock scheduling. In: Proc. ICCAD, pp. 611–618 (2004)

    Google Scholar 

  15. Vishweswariah, C., Ravindran, K., Kalafala, K., Walker, S., Narayan, S.: First-order incremental block-based statistical timing analysis. In: Proc. DAC, 2004, pp. 331–226 (2004)

    Google Scholar 

  16. Wu, T.-Y., Lin, Y.-L.: Storage optimization by replacing some flip-flops with latches. In: Proc. DAC (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nadine Azémard Lars Svensson

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hsu, CH., Chou, SJ., Jiang, JH.R., Chang, YW. (2007). A Statistical Approach to the Timing-Yield Optimization of Pipeline Circuits. In: Azémard, N., Svensson, L. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2007. Lecture Notes in Computer Science, vol 4644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74442-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74442-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74441-2

  • Online ISBN: 978-3-540-74442-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics