Iris Classifier Enhanced Algorithm Based on AdaBoost | SpringerLink
Skip to main content

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2))

Included in the following conference series:

Abstract

Iris recognition is a kind of important biometrics technology for personal identify verification, iris classification method has been achieved more attention according to different feature extraction. Binary feature extraction is one of the most effective techniques employed for the human iris recognition problem. However, the selection of a particular set of features is often problematic, so iris classifier performance isn’t satisfied. Based on AdaBoost, an enhanced algorithm for iris classifier is presented in this paper. The algorithm will achieve a stronger iris classifier (iris feature template) by lifting weaker similarity classifiers based on AdaBoost through training samples. Simulation results on CASIA iris database show that the method is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wang, H.C., Zhang, L.M.: A New Adaboost Fast Training Algorithm. Journal of Fudan University 43, 27–33 (2004)

    Google Scholar 

  2. Shen, L.L., Bai, L.: Gabor Feature Selection For Face Recognition Using Improved AdaBoost Learning. In: Li, S.Z., Sun, Z., Tan, T., Pankanti, S., Chollet, G., Zhang, D. (eds.) IWBRS 2005. LNCS, vol. 3781, pp. 39–49. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Sun, Z.N., Tan, T.N., Wang Y.H.: Robust Encoding of Local Ordinal Measures: A General Framework of Iris Recognition. In: European Conference on Computer Vision workshop on Biometric Authentication, pp. 270–282 (2004)

    Google Scholar 

  4. Vatsa, M., Singh. R., Gupta, P.: Comparison of Iris Recognition Algorithms. In: IEEE International Conference on Intelligent Sensing and Information Processing. Chennai, India, pp. 354–358 (2004)

    Google Scholar 

  5. John, D.: High Confidence Visual Recognition of Persons by A Test of Statistical Independence. IEEE Transactions on Pattern Analysis and Machine Intelligence 15, 1148–1161 (1993)

    Article  Google Scholar 

  6. Boles, W.W., Boashash, B.: A Human Identification Technique Using Images of the Iris and Wavelet Transform. IEEE Transactions on Signal Processing 46, 1185–1188 (1998)

    Article  Google Scholar 

  7. Bae, K., Noh, S., Kim, J.: Iris Feature Extraction Using Independent Component Analysis. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 838–844. Springer, Heidelberg (2003)

    Google Scholar 

  8. Raul, S., Carmen, S.: Iris Recognition with Low Template Size. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 324–329. Springer, Heidelberg (2001)

    Google Scholar 

  9. Kong, W.K., Zhang, D.: Detecting Eyelash and Reflection for Accurate Iris Segmentation. International Journal of Pattern Recognition and Artificial Intelligence 17, 1025–1034 (2003)

    Article  Google Scholar 

  10. Ma, L., Tan, T., Wang, Y.: Efficient Iris Recognition by Characterizing Key Local Variations. IEEE Transactions on Image Processing 13, 739–750 (2004)

    Article  Google Scholar 

  11. Daouk, C.H., El-Esber, L.A., Kammoun, F.D.: Iris Recognition. In: Proceedings of 2nd IEEE International Symposium on Signal Processing and Information Technology, pp. 558–562. IEEE Computer Society Press, Los Alamitos (2002)

    Google Scholar 

  12. Tian, Q.C., Pan, Q., Liang, Y.: Fast Iris Boundary Localization Algorithm Supervised by Pupil Center. Journal of System Simulation 18, 1777–1780 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

De-Shuang Huang Laurent Heutte Marco Loog

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tian, QC., Zhao, XL., Wu, XJ., Li, LS., Liu, L. (2007). Iris Classifier Enhanced Algorithm Based on AdaBoost. In: Huang, DS., Heutte, L., Loog, M. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Contemporary Intelligent Computing Techniques. ICIC 2007. Communications in Computer and Information Science, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74282-1_112

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74282-1_112

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74281-4

  • Online ISBN: 978-3-540-74282-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics