Abstract
This paper proposes a model-based method for intensity-based segmentation of images acquired from multiple modalities. Pixel intensity within a modality image is represented by a univariate Gaussian distribution mixture in which the components correspond to different segments. The proposed Multi-Modality Expectation-Maximization (MMEM) algorithm then estimates the probability of each segment along with parameters of the Gaussian distributions for each modality by maximum likelihood using the Expectation-Maximization (EM) algorithm. Multimodal images are simultaneously involved in the iterative parameter estimation step. Pixel classes are determined by maximising a posteriori probability contributed from all multimodal images. Experimental results show that the method exploits and fuses complementary information of multimodal images. Segmentation can thus be more precise than when using single-modality images.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Al Momani, B., Morrow, P., McClean, S.: Knowledge based semi-supervised satellite image classification. In: Proc. ISSPA 2007 (2007)
Bendjebbour, A., Delignon, Y., Fouque, L., Samson, V., Pieczynski, W.: Multisensor image segmentation using Dempster-Shafer fusion in markov fields context. IEEE Trans. Geo. Re. Sensing 39(8), 1789–1798 (2001)
Boudraa, A.-O., Bentabet, L., Salzenstein, F., Guillon, L.: Dempster-Shafer’s basic probability assignment based on fuzzy membership functions. Electronic Letters on Computer Vision and Image Analysis 4(1), 1–9 (2004)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Royal Statistics Society B(1), 1–38 (1977)
Hégarat-Mascle, S., Bloch, I., Vidal-Madjar, D.: Introduction of neighborhood information in evidence theory and application to data fusion of radar and optical images with partial cloud cover. Patt. Recog. 31(11), 1811–1823 (1998)
Kwan, R.K.-S., Evans, A.C., Pike, G.B.: MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans. Med. Imaging 18(11), 1085–1097 (1999), MRI simulator: http://www.bic.mni.mcgill.ca/brainweb/
Leemput, K.V., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based tissue classification of MR images of the brain. IEEE Trans. Med. Imaging 18(10), 897–908 (1999)
McClean, S., Scotney, B., Morrow, P., Greer, K.: Knowledge discovery by probabilistic clustering of distributed databases. Data Knowl. Eng. 54(2), 189–210 (2005)
Murtagh, F., Raftery, A.E., Starck, J.-L.: Bayesian inference for multiband image segmentation via model-based cluster trees. Img. and Vis. Comp. 23, 587–596 (2005)
Salzenstein, F., Boudraa, A.-O.: Iterative estimation of Dempster-Shafer’s basic probability assignment: application to multisensor image segmentation. Opt. Eng. 43(6), 1293–1299 (2004)
Zhu, Y.M., Bentabet, L., Dupuls, O., Kaftandjian, V., Babot, D., Rombaut, M.: Automatic determination of mass functions in Dempster-Shafer theory using fuzzy c-means and spatial neighborhood information for image segmentation. Opt. Eng. 41(4), 760–770 (2002)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hong, X., McClean, S., Scotney, B., Morrow, P. (2007). Model-Based Segmentation of Multimodal Images. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds) Computer Analysis of Images and Patterns. CAIP 2007. Lecture Notes in Computer Science, vol 4673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74272-2_75
Download citation
DOI: https://doi.org/10.1007/978-3-540-74272-2_75
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74271-5
Online ISBN: 978-3-540-74272-2
eBook Packages: Computer ScienceComputer Science (R0)