Model-Based Segmentation of Multimodal Images | SpringerLink
Skip to main content

Model-Based Segmentation of Multimodal Images

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4673))

Included in the following conference series:

  • 1892 Accesses

Abstract

This paper proposes a model-based method for intensity-based segmentation of images acquired from multiple modalities. Pixel intensity within a modality image is represented by a univariate Gaussian distribution mixture in which the components correspond to different segments. The proposed Multi-Modality Expectation-Maximization (MMEM) algorithm then estimates the probability of each segment along with parameters of the Gaussian distributions for each modality by maximum likelihood using the Expectation-Maximization (EM) algorithm. Multimodal images are simultaneously involved in the iterative parameter estimation step. Pixel classes are determined by maximising a posteriori probability contributed from all multimodal images. Experimental results show that the method exploits and fuses complementary information of multimodal images. Segmentation can thus be more precise than when using single-modality images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Al Momani, B., Morrow, P., McClean, S.: Knowledge based semi-supervised satellite image classification. In: Proc. ISSPA 2007 (2007)

    Google Scholar 

  2. Bendjebbour, A., Delignon, Y., Fouque, L., Samson, V., Pieczynski, W.: Multisensor image segmentation using Dempster-Shafer fusion in markov fields context. IEEE Trans. Geo. Re. Sensing 39(8), 1789–1798 (2001)

    Article  Google Scholar 

  3. Boudraa, A.-O., Bentabet, L., Salzenstein, F., Guillon, L.: Dempster-Shafer’s basic probability assignment based on fuzzy membership functions. Electronic Letters on Computer Vision and Image Analysis 4(1), 1–9 (2004)

    Google Scholar 

  4. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Royal Statistics Society B(1), 1–38 (1977)

    MathSciNet  Google Scholar 

  5. Hégarat-Mascle, S., Bloch, I., Vidal-Madjar, D.: Introduction of neighborhood information in evidence theory and application to data fusion of radar and optical images with partial cloud cover. Patt. Recog. 31(11), 1811–1823 (1998)

    Article  Google Scholar 

  6. Kwan, R.K.-S., Evans, A.C., Pike, G.B.: MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans. Med. Imaging 18(11), 1085–1097 (1999), MRI simulator: http://www.bic.mni.mcgill.ca/brainweb/

    Article  Google Scholar 

  7. Leemput, K.V., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based tissue classification of MR images of the brain. IEEE Trans. Med. Imaging 18(10), 897–908 (1999)

    Article  Google Scholar 

  8. McClean, S., Scotney, B., Morrow, P., Greer, K.: Knowledge discovery by probabilistic clustering of distributed databases. Data Knowl. Eng. 54(2), 189–210 (2005)

    Article  Google Scholar 

  9. Murtagh, F., Raftery, A.E., Starck, J.-L.: Bayesian inference for multiband image segmentation via model-based cluster trees. Img. and Vis. Comp. 23, 587–596 (2005)

    Article  Google Scholar 

  10. Salzenstein, F., Boudraa, A.-O.: Iterative estimation of Dempster-Shafer’s basic probability assignment: application to multisensor image segmentation. Opt. Eng. 43(6), 1293–1299 (2004)

    Article  Google Scholar 

  11. Zhu, Y.M., Bentabet, L., Dupuls, O., Kaftandjian, V., Babot, D., Rombaut, M.: Automatic determination of mass functions in Dempster-Shafer theory using fuzzy c-means and spatial neighborhood information for image segmentation. Opt. Eng. 41(4), 760–770 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Walter G. Kropatsch Martin Kampel Allan Hanbury

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hong, X., McClean, S., Scotney, B., Morrow, P. (2007). Model-Based Segmentation of Multimodal Images. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds) Computer Analysis of Images and Patterns. CAIP 2007. Lecture Notes in Computer Science, vol 4673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74272-2_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74272-2_75

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74271-5

  • Online ISBN: 978-3-540-74272-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics