Abstract
We consider a one-round two-player network pricing game, the Stackelberg Minimum Spanning Tree game or StackMST. The game is played on a graph (representing a network), whose edges are colored either red or blue, and where the red edges have a given fixed cost (representing the competitor’s prices). The first player chooses an assignment of prices to the blue edges, and the second player then buys the cheapest possible minimum spanning tree, using any combination of red and blue edges. The goal of the first player is to maximize the total price of purchased blue edges. This game is the minimum spanning tree analog of the well-studied Stackelberg shortest-path game.
We analyze the complexity and approximability of the first player’s best strategy in StackMST. In particular, we prove that the problem is APX-hard even if there are only two different red costs, and give an approximation algorithm whose approximation ratio is at most min {k,3 + 2ln b,1 + ln W}, where k is the number of distinct red costs, b is the number of blue edges, and W is the maximum ratio between red costs. We also give a natural integer linear programming formulation of the problem, and show that the integrality gap of the fractional relaxation asymptotically matches the approximation guarantee of our algorithm.
This work was partially supported by the Actions de Recherche Concertées (ARC) fund of the Communauté française de Belgique.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theoret. Comput. Sci. 237(1-2), 123–134 (2000)
Altman, E., Boulogne, T., El-Azouzi, R., Jiménez, T., Wynter, L.: A survey on networking games in telecommunications. Computers and Operations Research 33(2), 286–311 (2006)
Cardinal, J., Labbé, M., Langerman, S., Palop, B.: Pricing of geometric transportation networks. In: CCCG. Proc. Canadian Conference on Computational Geometry, pp. 92–96 (2005)
Cole, R., Dodis, Y., Roughgarden, T.: Pricing network edges for heterogeneous selfish users. In: STOC. Proc. Symp. Theory of Computing, pp. 521–530 (2003)
Dhamdhere, K., Ravi, R., Singh, M.: On two-stage stochastic minimum spanning trees. In: Jünger, M., Kaibel, V. (eds.) IPCO 2005. LNCS, vol. 3509, pp. 321–334. Springer, Heidelberg (2005)
Eppstein, D.: Setting parameters by example. SIAM Journal on Computing 32(3), 643–653 (2003)
Fernández-Baca, D., Slutzki, G., Eppstein, D.: Using sparsification for parametric minimum spanning tree problems. Nordic J. Computing 3(4), 352–366 (1996)
Granot, D., Huberman, G.: Minimum cost spanning tree games. Mathematical Programming 21(1), 1–18 (1981)
Grigoriev, A., van Hoesel, S., van der Kraaij, A., Uetz, M., Bouhtou, M.: Pricing network edges to cross a river. In: Persiano, G., Solis-Oba, R. (eds.) WAOA 2004. LNCS, vol. 3351, pp. 140–153. Springer, Heidelberg (2005)
Hartline, J.D., Koltun, V.: Near-optimal pricing in near-linear time. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, pp. 422–431. Springer, Heidelberg (2005)
Karlin, A., Kempe, D., Tamir, T.: Beyond VCG: Frugality of truthful mechanisms. In: FOCS 2005. Proc. 46th Annual IEEE Symposium on Foundations of Computer Science, pp. 615–626. IEEE Computer Society Press, Los Alamitos (2005)
Labbé, M., Marcotte, P., Savard, G.: A bilevel model of taxation and its application to optimal highway pricing. Management Science 44(12), 1608–1622 (1998)
Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Comput. System Sci. 43(3), 425–440 (1991)
Roch, S., Savard, G., Marcotte, P.: An approximation algorithm for Stackelberg network pricing. Networks 46(1), 57–67 (2005)
Roughgarden, T.: Stackelberg scheduling strategies. SIAM Journal on Computing 33(2), 332–350 (2004)
Swamy, C.: The effectiveness of Stackelberg strategies and tolls for network congestion games. In: SODA. Proc. Symp. on Discrete Algorithms (to appear)
van Hoesel, S.: An overview of Stackelberg pricing in networks. Research Memoranda 042, Maastricht : METEOR, Maastricht Research School of Economics of Technology and Organization (2006)
von Stackelberg, H.: Marktform und Gleichgewicht (Market and Equilibrium). Verlag von Julius Springer, Vienna (1934)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cardinal, J. et al. (2007). The Stackelberg Minimum Spanning Tree Game. In: Dehne, F., Sack, JR., Zeh, N. (eds) Algorithms and Data Structures. WADS 2007. Lecture Notes in Computer Science, vol 4619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73951-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-540-73951-7_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73948-7
Online ISBN: 978-3-540-73951-7
eBook Packages: Computer ScienceComputer Science (R0)