Range Non-overlapping Indexing and Successive List Indexing | SpringerLink
Skip to main content

Range Non-overlapping Indexing and Successive List Indexing

  • Conference paper
Algorithms and Data Structures (WADS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4619))

Included in the following conference series:

Abstract

We present two natural variants of the indexing problem:

In the range non-overlapping indexing problem, we preprocess a given text to answer queries in which we are given a pattern, and wish to find a maximal-length sequence of occurrences of the pattern in the text, such that the occurrences do not overlap with one another. While efficiently solving this problem, our algorithm even enables us to efficiently perform so in substrings of the text, denoted by given start and end locations. The methods we supply thus generalize the string statistics problem [4,5], in which we are asked to report merely the number of non-overlapping occurrences in the entire text, by reporting the occurrences themselves, even only for substrings of the text.

In the related successive list indexing problem, during query-time we are given a pattern and a list of locations in the preprocessed text. We then wish to find a list of occurrences of the pattern, such that the ith occurrence is the leftmost occurrence of the pattern which starts to the right of the ith location given by the input list.

Both problems are solved by using tools from computational geometry, specifically a variation of the range searching for minimum problem of Lenhof and Smid [12], here considered over a grid, in what appears to be the first utilization of range searching for minimum in an indexing-related context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwal, P., Erickson, J.: Geometric range searching and its relatives (1999)

    Google Scholar 

  2. Alstrup, S., Brodal, G.S., Rauhe, T.: New data structures for orthogonal range searching. In: IEEE Symposium on Foundations of Computer Science, pp. 198–207 (2000)

    Google Scholar 

  3. Amir, A., Keselman, D., Landau, G.M., Lewenstein, M., Lewenstein, N., Rodeh, M.: Text indexing and dictionary matching with one error. J. Algorithms 37(2), 309–325 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Apostolico, A., Preparata, F.P.: Data structures and algorithms for the string statistics problem. Algorithmica 15(5), 481–494 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brodal, G.S., Lyngsø, R.B., Östlin, A., Pedersen, C.N.S.: Solving the string statistics problem in time O(n log n). In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 728–739. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Dietzfelbinger, M., Karlin, A.R., Mehlhorn, K., auf der Heide, F.M., Rohnert, H., Tarjan, R.E.: Dynamic perfect hashing: Upper and lower bounds. vol. 23, pp. 738–761, Philadelphia, PA, USA, Society for Industrial and Applied Mathematics (1994)

    Google Scholar 

  7. Farach, M.: Optimal suffix tree construction with large alphabets. In: FOCS 1997. Proceedings of the 38th Annual Symposium on Foundations of Computer Science, Washington, DC, USA, p. 137. IEEE Computer Society Press, Los Alamitos (1997)

    Google Scholar 

  8. Ferragina, P.: Dynamic text indexing under string updates. J. Algorithms 22(2), 296–328 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ferragina, P., Muthukrishnan, S., de Berg, M.: Multi-method dispatching: A geometric approach with applications to string matching problems. In: STOC, pp. 483–491 (1999)

    Google Scholar 

  10. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geometry problems. In: STOC 1984. Proceedings of the sixteenth annual ACM symposium on Theory of computing, pp. 135–143. ACM Press, New York (1984)

    Chapter  Google Scholar 

  11. Knuth, D., Morris, J.H., Pratt, V.: Fast pattern matching in strings. SIAM Journal on Computing 6(2), 323–350 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lenhof, H.-P., Smid, M.: Using persistent data structures for adding range restrictions to searching problems. RAIRO Theoretical Informatics and Applications 28, 25–49 (1994)

    MATH  MathSciNet  Google Scholar 

  13. McCreight, E.M.: A space-economical suffix tree construction algorithm. J. ACM 23(2), 262–272 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Weiner, P.: Linear pattern matching algorithms. In: 14th Annual Symposium on Switching and Automata Theory, pp. 1–11. IEEE, New York (1973)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank Dehne Jörg-Rüdiger Sack Norbert Zeh

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Keller, O., Kopelowitz, T., Lewenstein, M. (2007). Range Non-overlapping Indexing and Successive List Indexing. In: Dehne, F., Sack, JR., Zeh, N. (eds) Algorithms and Data Structures. WADS 2007. Lecture Notes in Computer Science, vol 4619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73951-7_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73951-7_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73948-7

  • Online ISBN: 978-3-540-73951-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics