Abstract
We describe a new approximation algorithm for the asymmetric maximum traveling salesman problem (ATSP) with triangle inequality. Our algorithm achieves approximation factor 35/44 which improves on the previous 31/40 factor of Bläser, Ram and Sviridenko [2].
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bläser, M., Manthey, B.: Two approximation algorithms for 3-cycle covers. In: Jansen, K., Leonardi, S., Vazirani, V.V. (eds.) APPROX 2002. LNCS, vol. 2462, pp. 40–50. Springer, Heidelberg (2002)
Bläser, M., Ram, S., Sviridenko, M.: Improved approximation algorithms for metric maximum ATSP and maximum 3-cycle cover problems. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, pp. 350–359. Springer, Heidelberg (2005)
Hassin, R., Rubinstein, S.: Better approximations for max TSP. Inf. Process. Lett. 75(4), 181–186 (2000)
Hassin, R., Rubinstein, S.: A 7/8-approximation algorithm for metric Max TSP. Inf. Process. Lett. 81(5), 247–251 (2002)
Kaplan, H., Lewenstein, M., Shafrir, N., Sviridenko, M.: Approximation algorithms for asymmetric TSP by decomposing directed regular multigraphs. J. ACM 52(4), 602–626 (2005)
Kosaraju, S.R., Park, J.K., Stein, C.: Long tours and short superstrings (preliminary version). In: FOCS 1994, pp. 166–177 (1994)
Kostochka, A.V., Serdyukov, A.I.: Polynomial algorithms with the estimates 3/4 and 5/6 for the traveling salesman problem of the maximum (in Russian). Upravlyaemye Sistemy 26, 55–59 (1985)
Lewenstein, M., Sviridenko, M.: A 5/8 approximation algorithm for the maximum asymmetric TSP. SIAM J. Discrete Math. 17(2), 237–248 (2003)
Serdyukov, A.I.: The traveling salesman problem of the maximum (in Russian). Upravlyaemye Sistemy 25, 80–86 (1984)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kowalik, Ł., Mucha, M. (2007). 35/44-Approximation for Asymmetric Maximum TSP with Triangle Inequality. In: Dehne, F., Sack, JR., Zeh, N. (eds) Algorithms and Data Structures. WADS 2007. Lecture Notes in Computer Science, vol 4619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73951-7_51
Download citation
DOI: https://doi.org/10.1007/978-3-540-73951-7_51
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73948-7
Online ISBN: 978-3-540-73951-7
eBook Packages: Computer ScienceComputer Science (R0)