Abstract
Let σ and \(\varrho\) be two sets of nonnegative integers. A vertex subset S ⊆ V of an undirected graph G = (V,E) is called a \((\sigma,\varrho)\)-dominating set of G if |N(v) ∩ S| ∈ σ for all v ∈ S and \(|N(v)\cap S| \in \varrho\) for all v ∈ V ∖ S. This notion introduced by Telle generalizes many domination-type graph invariants. For many particular choices of σ and \(\varrho\) it is NP-complete to decide whether an input graph has a \((\sigma,\varrho)\)-dominating set.
We show a general algorithm enumerating all \((\sigma,\varrho)\)-dominating sets of an input graph G in time O *(c n) for some c < 2 using only polynomial space, if σ is successor-free, i.e., it does not contain two consecutive integers, and either both σ and \(\varrho\) are finite, or one of them is finite and \(\sigma \cap \varrho = \emptyset\). Thus in this case one can find maximum and minimum \((\sigma,\varrho)\)-dominating sets in time o(2n). Our algorithm straightforwardly implies a non trivial upper bound c n with c < 2 for the number of \((\sigma,\varrho)\)-dominating sets in an n-vertex graph under the above conditions on σ and \(\varrho\).
Finally, we also present algorithms to find maximum and minimum ({p}, {q})-dominating sets and to count the ({p},{q})-dominating sets of a graph in time O *(2n/2).
Part of the research was done when some of the authors were visiting DIMATIA, Prague, in April 2006.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Björklund, A., Husfeldt, T.: Inclusion-exclusion algorithms for counting set partitions. In: Proceedings of FOCS, pp. 575–582 (2006)
Byskov, J.M.: Enumerating maximal independent sets with applications to graph colouring. Operations Research Letters 32, 547–556 (2004)
Byskov, J.M., Madsen, B.A., Skjernaa, B.: On the number of maximal bipartite subgraphs of a graph. Journal of Graph Theory 48, 127–132 (2005)
Dahlöf, V., Jonsson, P., Beigel, R.: Algorithms for four variants of the exact satisfiability problem. Theoretical Computer Science 320, 373–394 (2004)
Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer, Heidelberg (1999)
Eppstein, D.: Small maximal independent sets and faster exact graph coloring. Journal of Graph Algorithms and Applications 7, 131–140 (2003)
Fomin, F.V., Gaspers, S., Pyatkin, A.V.: Finding a minimum feedback vertex set in time O(1.7548n). In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 184–191. Springer, Heidelberg (2006)
Fomin, F.V., Grandoni, F., Pyatkin, A.V., Stepanov, A.A.: Bounding the Number of Minimal Dominating Sets: a Measure and Conquer Approach. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 573–582. Springer, Heidelberg (2005)
Gupta, S., Raman, V., Saurabh, S.: Fast exponential algorithms for Maximum r-regular induced subgraph problems. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 139–151. Springer, Heidelberg (2006)
Halldorsson, M.M., Kratochvil, J., Telle, J.A.: Independent sets with domination constraints. Discrete Applied Mathematics 99, 39–54 (2000)
Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Marcel Dekker, New York (1998)
Heggernes, P., Telle, J.A.: Partitioning graphs into generalized dominating sets. Nordic Journal of Computing 5, 128–142 (1998)
Moon, J.W., Moser, L.: On cliques in graphs. Israel Journal of Mathematics 5, 23–28 (1965)
Schroeppel, R., Shamir, A.: A T = O(2n/2), S = O(2n/d) algorithm for certain NP-complete problems. SIAM Journal on Computing 3, 456–464 (1981)
Telle, J.A.: Complexity of domination-type problems in graphs. Nordic Journal of Computing 1, 157–171 (1994)
Woeginger, G.J.: Exact algorithms for NP-hard problems: A survey. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink! LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fomin, F.V., Golovach, P.A., Kratochvíl, J., Kratsch, D., Liedloff, M. (2007). Branch and Recharge: Exact Algorithms for Generalized Domination. In: Dehne, F., Sack, JR., Zeh, N. (eds) Algorithms and Data Structures. WADS 2007. Lecture Notes in Computer Science, vol 4619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73951-7_44
Download citation
DOI: https://doi.org/10.1007/978-3-540-73951-7_44
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73948-7
Online ISBN: 978-3-540-73951-7
eBook Packages: Computer ScienceComputer Science (R0)