Branch and Recharge: Exact Algorithms for Generalized Domination | SpringerLink
Skip to main content

Branch and Recharge: Exact Algorithms for Generalized Domination

  • Conference paper
Algorithms and Data Structures (WADS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4619))

Included in the following conference series:

Abstract

Let σ and \(\varrho\) be two sets of nonnegative integers. A vertex subset S ⊆ V of an undirected graph G = (V,E) is called a \((\sigma,\varrho)\)-dominating set of G if |N(v) ∩ S| ∈ σ for all v ∈ S and \(|N(v)\cap S| \in \varrho\) for all v ∈ V ∖ S. This notion introduced by Telle generalizes many domination-type graph invariants. For many particular choices of σ and \(\varrho\) it is NP-complete to decide whether an input graph has a \((\sigma,\varrho)\)-dominating set.

We show a general algorithm enumerating all \((\sigma,\varrho)\)-dominating sets of an input graph G in time O *(c n) for some c < 2 using only polynomial space, if σ is successor-free, i.e., it does not contain two consecutive integers, and either both σ and \(\varrho\) are finite, or one of them is finite and \(\sigma \cap \varrho = \emptyset\). Thus in this case one can find maximum and minimum \((\sigma,\varrho)\)-dominating sets in time o(2n). Our algorithm straightforwardly implies a non trivial upper bound c n with c < 2 for the number of \((\sigma,\varrho)\)-dominating sets in an n-vertex graph under the above conditions on σ and \(\varrho\).

Finally, we also present algorithms to find maximum and minimum ({p}, {q})-dominating sets and to count the ({p},{q})-dominating sets of a graph in time O *(2n/2).

Part of the research was done when some of the authors were visiting DIMATIA, Prague, in April 2006.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Björklund, A., Husfeldt, T.: Inclusion-exclusion algorithms for counting set partitions. In: Proceedings of FOCS, pp. 575–582 (2006)

    Google Scholar 

  2. Byskov, J.M.: Enumerating maximal independent sets with applications to graph colouring. Operations Research Letters 32, 547–556 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Byskov, J.M., Madsen, B.A., Skjernaa, B.: On the number of maximal bipartite subgraphs of a graph. Journal of Graph Theory 48, 127–132 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dahlöf, V., Jonsson, P., Beigel, R.: Algorithms for four variants of the exact satisfiability problem. Theoretical Computer Science 320, 373–394 (2004)

    Article  MathSciNet  Google Scholar 

  5. Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer, Heidelberg (1999)

    Google Scholar 

  6. Eppstein, D.: Small maximal independent sets and faster exact graph coloring. Journal of Graph Algorithms and Applications 7, 131–140 (2003)

    MATH  MathSciNet  Google Scholar 

  7. Fomin, F.V., Gaspers, S., Pyatkin, A.V.: Finding a minimum feedback vertex set in time O(1.7548n). In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 184–191. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Fomin, F.V., Grandoni, F., Pyatkin, A.V., Stepanov, A.A.: Bounding the Number of Minimal Dominating Sets: a Measure and Conquer Approach. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 573–582. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Gupta, S., Raman, V., Saurabh, S.: Fast exponential algorithms for Maximum r-regular induced subgraph problems. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 139–151. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Halldorsson, M.M., Kratochvil, J., Telle, J.A.: Independent sets with domination constraints. Discrete Applied Mathematics 99, 39–54 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Marcel Dekker, New York (1998)

    Google Scholar 

  12. Heggernes, P., Telle, J.A.: Partitioning graphs into generalized dominating sets. Nordic Journal of Computing 5, 128–142 (1998)

    MATH  MathSciNet  Google Scholar 

  13. Moon, J.W., Moser, L.: On cliques in graphs. Israel Journal of Mathematics 5, 23–28 (1965)

    Article  MathSciNet  Google Scholar 

  14. Schroeppel, R., Shamir, A.: A T = O(2n/2), S = O(2n/d) algorithm for certain NP-complete problems. SIAM Journal on Computing 3, 456–464 (1981)

    Article  MathSciNet  Google Scholar 

  15. Telle, J.A.: Complexity of domination-type problems in graphs. Nordic Journal of Computing 1, 157–171 (1994)

    MathSciNet  Google Scholar 

  16. Woeginger, G.J.: Exact algorithms for NP-hard problems: A survey. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink! LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank Dehne Jörg-Rüdiger Sack Norbert Zeh

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fomin, F.V., Golovach, P.A., Kratochvíl, J., Kratsch, D., Liedloff, M. (2007). Branch and Recharge: Exact Algorithms for Generalized Domination. In: Dehne, F., Sack, JR., Zeh, N. (eds) Algorithms and Data Structures. WADS 2007. Lecture Notes in Computer Science, vol 4619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73951-7_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73951-7_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73948-7

  • Online ISBN: 978-3-540-73951-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics