Kernelization and Complexity Results for Connectivity Augmentation Problems | SpringerLink
Skip to main content

Kernelization and Complexity Results for Connectivity Augmentation Problems

  • Conference paper
Algorithms and Data Structures (WADS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4619))

Included in the following conference series:

Abstract

Connectivity augmentation problems ask for adding a set of at most k edges whose insertion makes a given graph satisfy a specified connectivity property, such as bridge-connectivity or biconnectivity. We show that, for bridge-connectivity and biconnectivity, the respective connectivity augmentation problems admit problem kernels with O(k 2) vertices and links. Moreover, we study partial connectivity augmentation problems, naturally generalizing connectivity augmentation problems. Here, we do not require that, after adding the edges, the entire graph should satisfy the connectivity property, but a large subgraph. In this setting, two polynomial-time solvable connectivity augmentation problems behave differently, namely, the partial biconnectivity augmentation problem remains polynomial-time solvable whereas the partial strong connectivity augmentation problem becomes W[2]-hard with respect to k.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)

    Google Scholar 

  2. Eswaran, K.P., Tarjan, R.E.: Augmentation problems. SIAM Journal on Computing 5(4), 653–665 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  3. Even, G., Feldman, J., Kortsarz, G., Nutov, Z.: A 3/2-approximation algorithm for augmenting the edge-connectivity of a graph from 1 to 2 using a subset of a given edge set. In: Goemans, M.X., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) RANDOM 2001 and APPROX 2001. LNCS, vol. 2129, pp. 90–101. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Frederickson, G.N., JáJá, J.: Approximation algorithms for several graph augmentation problems. SIAM Journal on Computing 10(2), 270–283 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  5. Khuller, S., Thurimella, R.: Approximation algorithms for graph augmentation. Journal of Algorithms 14(2), 214–225 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kortsarz, G., Krauthgamer, R., Lee, J.R.: Hardness of approximation for vertex-connectivity network design problems. SIAM Journal on Computing 33(3), 704–720 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kortsarz, G., Nutov, Z.: A 12/7-approximation algorithm for the vertex-connectivity of a graph from 1 to 2, Manuscipt (2002)

    Google Scholar 

  8. Nagamochi, H.: An approximation for finding a smallest 2-edge-connected subgraph containing a specified spanning tree. Discrete Applied Mathematics 126, 83–113 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  10. Rosenthal, A., Goldner, A.: Smallest augmentations to biconnect a graph. SIAM Journal on Computing 6(1), 55–66 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  11. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM Journal on Computing 1(2), 146–160 (1972)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank Dehne Jörg-Rüdiger Sack Norbert Zeh

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guo, J., Uhlmann, J. (2007). Kernelization and Complexity Results for Connectivity Augmentation Problems. In: Dehne, F., Sack, JR., Zeh, N. (eds) Algorithms and Data Structures. WADS 2007. Lecture Notes in Computer Science, vol 4619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73951-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73951-7_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73948-7

  • Online ISBN: 978-3-540-73951-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics