Abstract
Let G = (S, E) be a plane straight-line graph on a finite point set in general position. The incident angles of a point p ∈ S in G are the angles between any two edges of G that appear consecutively in the circular order of the edges incident to p. A plane straight-line graph is called ϕ-open if each vertex has an incident angle of size at least ϕ. In this paper we study the following type of question: What is the maximum angle ϕ such that for any finite set of points in general position we can find a graph from a certain class of graphs on S that is ϕ-open? In particular, we consider the classes of triangulations, spanning trees, and paths on S and give tight bounds in most cases.
O.A., T.H., and B.V. were supported by the Austrian FWF Joint Research Project ’Industrial Geometry’ S9205-N12. C.H. was partially supported by projects MEC MTM2006-01267 and Gen. Cat. 2005SGR00692. A.P. was partially supported by Hungarian National Foundation Grant T60427. F.S. was partially supported by grant MTM2005-08618-C02-02 of the Spanish Ministry of Education and Science. Preliminary results of this article have been presented in [1].
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aichholzer, O., Hackl, T., Hoffmann, M., Huemer, C., Santos, F., Speckmann, B., Vogtenhuber, B.: Maximizing Maximal Angles for Plane Straight Line Graphs - Extended Abstract. In: Abstracts 23rd European Workshop Comput. Geom., pp. 98–101 (2007)
Aurenhammer, F., Xu, Y.-F.: Optimal Triangulations. Encyclopedia of Optimization 4, 160–166 (2000)
Aichholzer, O., Aurenhammer, F., Krasser, H., Brass, P.: Pseudo-Triangulations from Surfaces and a Novel Type of Edge Flip. SIAM J. Comput. 32(6), 1621–1653 (2003)
Aggarwal, A., Coppersmith, D., Khanna, S., Motwani, R., Schieber, B.: The Angular-Metric Traveling Salesman Problem. SIAM J. Comput. 29(3), 697–711 (1999)
Arkin, E., Fekete, S., Hurtado, F., Mitchell, J., Noy, M., Sacristán, V., Sethia, S.: On the Reflexivity of Point Sets. In: Discrete and Computational Geometry: The Goodman-Pollack Festschrift, Springer, Heidelberg (2003)
Bárány, I., Pór, A., Valtr, P.: Paths with no Small Angles. Manuscript in preparation (2006)
Bern, M., Eppstein, D., Gilbert, J.: Provably Good Mesh Generation. J. Comput. Syst. Sci. 48(3), 384–409 (1994)
Dai, Y., Katoh, N., Cheng, S.-W.: LMT-Skeleton Heuristics for Several New Classes of Optimal Triangulations. Comput. Geom. Theory Appl. 17(1-2), 51–68 (2000)
Eppstein, D.: The Farthest Point Delaunay Triangulation Minimizes Angles. Comput. Geom. Theory Appl. 1(3), 143–148 (1992)
Edelsbrunner, H., Tan, T.S., Waupotitsch, R.: An O(n 2 logn) Time Algorithm for the Minmax Angle Triangulation. SIAM J. Sci. Stat. Comput. 13(4), 994–1008 (1992)
Fekete, S.P., Woeginger, G.J.: Angle-Restricted Tours in the Plane. Comput. Geom. Theory Appl. 8(4), 195–218 (1997)
Haas, R., Orden, D., Rote, G., Santos, F., Servatius, B., Servatius, H., Souvaine, D., Streinu, I., Whiteley, W.: Planar Minimally Rigid Graphs and Pseudo-Triangulations. Comput. Geom. Theory Appl. 31(1-2), 31–61 (2005)
Kirkpatrick, D., Snoeyink, J., Speckmann, B.: Kinetic Collision Detection for Simple Polygons. Internat. J. Comput. Geom. Appl. 12(1-2), 3–27 (2002)
Keil, J.M., Vassilev, T.S.: The Relative Neighbourhood Graph is a Part of Every 30deg-Triangulation. Abstracts 21st European Workshop Comput. Geom., pp. 9–12 (2005)
Rote, G., Santos, F., Streinu, I.: Pseudo-Triangulations – a Survey. Manuscript (2006), http://arxiv.org/abs/math/0612672
Streinu, I.: Pseudo-Triangulations, Rigidity and Motion Planning. Discrete Comput. Geom. 34(4), 587–635 (2005)
Vogtenhuber, B.: On Plane Straight Line Graphs. Master’s Thesis, Graz University of Technology, Graz, Austria (January 2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Aichholzer, O. et al. (2007). Maximizing Maximal Angles for Plane Straight-Line Graphs. In: Dehne, F., Sack, JR., Zeh, N. (eds) Algorithms and Data Structures. WADS 2007. Lecture Notes in Computer Science, vol 4619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73951-7_40
Download citation
DOI: https://doi.org/10.1007/978-3-540-73951-7_40
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73948-7
Online ISBN: 978-3-540-73951-7
eBook Packages: Computer ScienceComputer Science (R0)