Maximizing Maximal Angles for Plane Straight-Line Graphs | SpringerLink
Skip to main content

Maximizing Maximal Angles for Plane Straight-Line Graphs

  • Conference paper
Algorithms and Data Structures (WADS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4619))

Included in the following conference series:

  • 1383 Accesses

Abstract

Let G = (S, E) be a plane straight-line graph on a finite point set in general position. The incident angles of a point p ∈ S in G are the angles between any two edges of G that appear consecutively in the circular order of the edges incident to p. A plane straight-line graph is called ϕ-open if each vertex has an incident angle of size at least ϕ. In this paper we study the following type of question: What is the maximum angle ϕ such that for any finite set of points in general position we can find a graph from a certain class of graphs on S that is ϕ-open? In particular, we consider the classes of triangulations, spanning trees, and paths on S and give tight bounds in most cases.

O.A., T.H., and B.V. were supported by the Austrian FWF Joint Research Project ’Industrial Geometry’ S9205-N12. C.H. was partially supported by projects MEC MTM2006-01267 and Gen. Cat. 2005SGR00692. A.P. was partially supported by Hungarian National Foundation Grant T60427. F.S. was partially supported by grant MTM2005-08618-C02-02 of the Spanish Ministry of Education and Science. Preliminary results of this article have been presented in [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aichholzer, O., Hackl, T., Hoffmann, M., Huemer, C., Santos, F., Speckmann, B., Vogtenhuber, B.: Maximizing Maximal Angles for Plane Straight Line Graphs - Extended Abstract. In: Abstracts 23rd European Workshop Comput. Geom., pp. 98–101 (2007)

    Google Scholar 

  2. Aurenhammer, F., Xu, Y.-F.: Optimal Triangulations. Encyclopedia of Optimization 4, 160–166 (2000)

    Google Scholar 

  3. Aichholzer, O., Aurenhammer, F., Krasser, H., Brass, P.: Pseudo-Triangulations from Surfaces and a Novel Type of Edge Flip. SIAM J. Comput. 32(6), 1621–1653 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aggarwal, A., Coppersmith, D., Khanna, S., Motwani, R., Schieber, B.: The Angular-Metric Traveling Salesman Problem. SIAM J. Comput. 29(3), 697–711 (1999)

    Article  MathSciNet  Google Scholar 

  5. Arkin, E., Fekete, S., Hurtado, F., Mitchell, J., Noy, M., Sacristán, V., Sethia, S.: On the Reflexivity of Point Sets. In: Discrete and Computational Geometry: The Goodman-Pollack Festschrift, Springer, Heidelberg (2003)

    Google Scholar 

  6. Bárány, I., Pór, A., Valtr, P.: Paths with no Small Angles. Manuscript in preparation (2006)

    Google Scholar 

  7. Bern, M., Eppstein, D., Gilbert, J.: Provably Good Mesh Generation. J. Comput. Syst. Sci. 48(3), 384–409 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dai, Y., Katoh, N., Cheng, S.-W.: LMT-Skeleton Heuristics for Several New Classes of Optimal Triangulations. Comput. Geom. Theory Appl. 17(1-2), 51–68 (2000)

    MATH  MathSciNet  Google Scholar 

  9. Eppstein, D.: The Farthest Point Delaunay Triangulation Minimizes Angles. Comput. Geom. Theory Appl. 1(3), 143–148 (1992)

    MATH  MathSciNet  Google Scholar 

  10. Edelsbrunner, H., Tan, T.S., Waupotitsch, R.: An O(n 2 logn) Time Algorithm for the Minmax Angle Triangulation. SIAM J. Sci. Stat. Comput. 13(4), 994–1008 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fekete, S.P., Woeginger, G.J.: Angle-Restricted Tours in the Plane. Comput. Geom. Theory Appl. 8(4), 195–218 (1997)

    MATH  MathSciNet  Google Scholar 

  12. Haas, R., Orden, D., Rote, G., Santos, F., Servatius, B., Servatius, H., Souvaine, D., Streinu, I., Whiteley, W.: Planar Minimally Rigid Graphs and Pseudo-Triangulations. Comput. Geom. Theory Appl. 31(1-2), 31–61 (2005)

    MATH  MathSciNet  Google Scholar 

  13. Kirkpatrick, D., Snoeyink, J., Speckmann, B.: Kinetic Collision Detection for Simple Polygons. Internat. J. Comput. Geom. Appl. 12(1-2), 3–27 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Keil, J.M., Vassilev, T.S.: The Relative Neighbourhood Graph is a Part of Every 30deg-Triangulation. Abstracts 21st European Workshop Comput. Geom., pp. 9–12 (2005)

    Google Scholar 

  15. Rote, G., Santos, F., Streinu, I.: Pseudo-Triangulations – a Survey. Manuscript (2006), http://arxiv.org/abs/math/0612672

  16. Streinu, I.: Pseudo-Triangulations, Rigidity and Motion Planning. Discrete Comput. Geom. 34(4), 587–635 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Vogtenhuber, B.: On Plane Straight Line Graphs. Master’s Thesis, Graz University of Technology, Graz, Austria (January 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank Dehne Jörg-Rüdiger Sack Norbert Zeh

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aichholzer, O. et al. (2007). Maximizing Maximal Angles for Plane Straight-Line Graphs. In: Dehne, F., Sack, JR., Zeh, N. (eds) Algorithms and Data Structures. WADS 2007. Lecture Notes in Computer Science, vol 4619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73951-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73951-7_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73948-7

  • Online ISBN: 978-3-540-73951-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics