Abstract
In this paper we describe space-efficient data structures for two-dimensional range searching problem.
We present a dynamic linear space data structure that supports orthogonal range reporting queries in O(logn + klogε n) time, where k is the size of the answer. Our data structure also supports emptiness and one-reporting queries in O(logn) time and thus achieves optimal time and space for this type of queries. In the case of integer point coordinates, we describe a static linear space data structure that supports range reporting queries in O(logn/loglogn + klogε n) time and emptiness and one-reporting queries in O(logn/loglogn) time. This is the first linear space data structure for these problems that achieves sub-logarithmic query time.
We also present a dynamic linear space data structure for range counting queries with O((logn/loglogn)2) time and a dynamic O(nlogn/loglogn) space data structure for semi-group range sum queries with query time O((logn/loglogn)2).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alstrup, S., Brodal, G.S., Rauhe, T.: New Data Structures for Orthogonal Range Searching. In: Proc. 41st FOCS 2000, pp. 198–207 (2000)
Arge, L., Vitter, J.S.: Optimal External Memory Interval Management. SIAM J. on Computing 32(6), 1488–1508 (2003)
Bender, M.A., Cole, R., Demaine, E.D., Farach-Colton, M., Zito, J.: Two Simplified Algorithms for Maintaining Order in a List. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 152–164. Springer, Heidelberg (2002)
Bentley, J.L.: Multidimensional Divide-and-Conquer. Commun. ACM 23, 214–229 (1980)
Blandford, D.K., Blelloch, G.E.: Compact Representations of Ordered Sets. In: Proc. 15th SODA 2004, pp. 11–19 (2004)
Chazelle, B.: A Functional Approach to Data Structures and its Use in Multidimensional Searching. SIAM J. on Computing 17, 427–462 (1988)
Elias, P.: Universal Codeword Sets and Representations of the Integers. IEEE Transactions on Information Theory 21, 194–203 (1975)
van Emde Boas, P.: Preserving Order in a Forest in Less Than Logarithmic Time and Linear Space. Inf. Process. Lett. 6(3), 80–82 (1977)
van Emde Boas, P., Kaas, R., Zijlstra, E.: Design and Implementation of an Efficient Priority Queue. Mathematical Systems Theory 10, 99–127 (1977)
Itai, A., Konheim, A.G., Rodeh, M.: A Sparse Table Implementation of Priority Queues. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 417–431. Springer, Heidelberg (1981)
Van Kreveld, M., Overmars, M.H.: Divided K-d Trees. Algorithmica 6(6), 840–858 (1991)
Mehlhorn, K.: Data Structures and Algorithms 1: Sorting and Searching. Springer, Heidelberg (1984)
Mortensen, C.W.: Fully Dynamic Orthogonal Range Reporting on RAM. SIAM J. on Computing 35, 1494–1525 (2006)
Nekrich, Y.: Space Efficient Dynamic Orthogonal Range Reporting. In: Proc. 21st SoCG 2005, pp. 306–313 (2005)
Nekrich, Y.: A Linear Space Data Structure for Orthogonal Range Reporting and Emptiness Queries. In: Proc. 18th CCCG 2006, pp. 159–163 (2006)
Mortensen, C.W., Pagh, R., Pǎtraşcu, M.: On Dynamic Range Reporting in One Dimension. In: Proc. 37th STOC 2005, pp. 104–111 (2005)
Pǎtraşcu, M.: Lower Bounds for 2-Dimensional Range Counting. In: Proc. 39th STOC 2007 (to appear)
Pǎtraşcu, M., Demaine, E.D.: Tight Bounds for the Partial-Sums Problem. In: Proc. 15th SODA 2004, pp. 20–29 (2004)
Willard, D.E.: A Density Control Algorithm for Doing Insertions and Deletions in a Sequentially Ordered File in Good Worst-Case Time. Information and Computation 97, 150–204 (1992)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nekrich, Y. (2007). Orthogonal Range Searching in Linear and Almost-Linear Space. In: Dehne, F., Sack, JR., Zeh, N. (eds) Algorithms and Data Structures. WADS 2007. Lecture Notes in Computer Science, vol 4619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73951-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-540-73951-7_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73948-7
Online ISBN: 978-3-540-73951-7
eBook Packages: Computer ScienceComputer Science (R0)