Spanners for Geometric Intersection Graphs | SpringerLink
Skip to main content

Spanners for Geometric Intersection Graphs

  • Conference paper
Algorithms and Data Structures (WADS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4619))

Included in the following conference series:

Abstract

A disk graph is an intersection graph of a set of disks with arbitrary radii in the plane. In this paper, we consider the problem of efficient construction of sparse spanners of disk (ball) graphs with support for fast distance queries. These problems are motivated by issues arising from topology control and routing in wireless networks.

We present the first algorithm for constructing spanners of ball graphs. For a ball graph in , we construct a (1 + ε)-spanner with O( − k + 1) edges in O(n 2ℓ + δ ε − k log S) expected time, using an efficient partitioning of the space into hypercubes and solving intersection problems. Here \(\ell=1-1/(\lfloor k/2 \rfloor+2)\), δ is any positive constant, and S is the ratio between the largest and smallest radius. For the special case where all the balls have the same radius, we show that the spanner construction has complexity almost equivalent to the construction of a Euclidean minimum spanning tree. Previously known constructions of spanners of unit ball graphs have time complexity much closer to n 2. Additionally, these spanners have a small vertex separator (hereditary), which is then exploited for fast answering of distance queries. The results on geometric graph separators might be of independent interest.

A short abstract of this work appeared in the proceedings of FWCG 2006.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Eppstein, D.: Testing bipartiteness of geometric intersection graphs. In: SODA 2004, SIAM, pp. 860–868 (2004)

    Google Scholar 

  2. Rajaraman, R.: Topology control and routing in ad hoc networks: A survey. SIGACT News 33, 60–73 (2002)

    Article  Google Scholar 

  3. Li, X.Y.: Algorithmic, geometric and graphs issues in wireless networks. Wireless Communications and Mobile Computing 3(2), 119–140 (2003)

    Article  Google Scholar 

  4. Erickson, J.: On the relative complexities of some geometric problems. In: CCCG 1995, pp. 85–90 (1995)

    Google Scholar 

  5. Yao, A.C.C.: On constructing minimum spanning trees in k-dimensional spaces and related problems. SIAM Journal on Computing 11(4), 721–736 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  6. Agarwal, P.K., Edelsbrunner, H., Schwarzkopf, O., Welzl, E.: Euclidean minimum spanning trees and bichromatic closest pairs. Discrete & Computational Geometry 6, 407–422 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gao, J., Zhang, L.: Well-separated pair decomposition for the unit-disk graph metric and its applications. SIAM Journal on Computing 35(1), 151–169 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gudmundsson, J.: Constructing sparse t-spanners with small separators. In: Lingas, A., Nilsson, B.J. (eds.) FCT 2003. LNCS, vol. 2751, pp. 86–97. Springer, Heidelberg (2003)

    Google Scholar 

  9. Gudmundsson, J.: Personal communication (2006)

    Google Scholar 

  10. Fürer, M., Kasiviswanathan, S.P.: Approximate distance queries in disk graphs. In: Erlebach, T., Kaklamanis, C. (eds.) WAOA 2006. LNCS, vol. 4368, pp. 174–187. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Agarwal, P.K., Matoušek, J.: Dynamic half-space range reporting and its applications. Algorithmica 13(4), 325–345 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fürer, M., Kasiviswanathan, S.P.: Spanners for geometric intersection graphs (2007), Available at http://www.cse.psu.edu/~kasivisw/spanner.pdf

  13. Ruppert, J., Seidel, R.: Approximating the d-dimensional complete euclidean graph. In: CCCG 1991, pp. 207–210 (1991)

    Google Scholar 

  14. Bose, P., Maheshwari, A., Narasimhan, G., Smid, M.H.M., Zeh, N.: Approximating geometric bottleneck shortest paths. Comput. Geom 29(3), 233–249 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lukovszki, T.: New results on geometric spanners and their applications. PhD. thesis, University of Paderborn (1999)

    Google Scholar 

  16. Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets with applications to K-nearest-neighbors and N-body potential fields. J. ACM 42(1), 67–90 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Callahan, P.B., Kosaraju, S.R.: Faster algorithms for some geometric graph problems in higher dimensions. In: SODA 1993, SIAM, pp. 291–300 (1993)

    Google Scholar 

  18. Smid, M.: The well-separated pair decomposition and its applications. In: Gonzalez, T. (ed.) Handbook on Approximation Algorithms and Metaheuristics, Chapman & Hall/CRC (to appear)

    Google Scholar 

  19. Har-Peled, S.: Approximation algorithms in geometry. Available at: http://valis.cs.uiuc.edu/~sariel/research/book/aprx/

  20. Bern, M.W., Eppstein, D., Teng, S.H.: Parallel construction of quadtrees and quality triangulations. Int. J. Computational Geometry & Applications 9(6), 517–532 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gupta, P., Janardan, R., Smid, M.: Algorithms for some intersection searching problems involving circular objects. International Journal of Mathematical Algorithms 1, 35–52 (1999)

    MATH  Google Scholar 

  22. Chan, T.M.: Geometric applications of a randomized optimization technique. Discrete & Computational Geometry 22(4), 547–567 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Krznaric, D., Levcopoulos, C., Nilsson, B.J.: Minimum spanning trees in d dimensions. Nord. J. Comput. 6(4), 446–461 (1999)

    MATH  MathSciNet  Google Scholar 

  24. Arikati, S.R., Chen, D.Z., Chew, L.P., Das, G., Smid, M.H.M., Zaroliagis, C.D.: Planar spanners and approximate shortest path queries among obstacles in the plane. In: Díaz, J. (ed.) ESA 1996. LNCS, vol. 1136, pp. 514–528. Springer, Heidelberg (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank Dehne Jörg-Rüdiger Sack Norbert Zeh

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fürer, M., Kasiviswanathan, S.P. (2007). Spanners for Geometric Intersection Graphs. In: Dehne, F., Sack, JR., Zeh, N. (eds) Algorithms and Data Structures. WADS 2007. Lecture Notes in Computer Science, vol 4619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73951-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73951-7_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73948-7

  • Online ISBN: 978-3-540-73951-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics