Steiner Tree in Planar Graphs: An O(nlogn) Approximation Scheme with Singly-Exponential Dependence on Epsilon | SpringerLink
Skip to main content

Steiner Tree in Planar Graphs: An O(nlogn) Approximation Scheme with Singly-Exponential Dependence on Epsilon

  • Conference paper
Algorithms and Data Structures (WADS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4619))

Included in the following conference series:

Abstract

We give an algorithm that, for any ε> 0, any undirected planar graph G, and any set S of nodes of G, computes a (1 + ε)-optimal Steiner tree in G that spans the nodes of S. The algorithm takes time O(2poly(1/ε) n logn).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arora, S.: Polynomial-time approximation schemes for euclidean TSP and other geometric problems. JACM 45(5), 753–782 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Berman, P., Ramaiyer, V.: Improved approximations for the Steiner tree problem. Journal of Algorithms 17, 381–408 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bern, M.: Faster exact algorithms for Steiner trees in planar networks. Networks 20, 109–120 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bern, M., Bienstock, D.: Polynomially solvable special cases of the Steiner problem in planar networks. Annals of Operations Research 33, 405–418 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bern, M., Plassmann, P.: The Steiner problem with edge lengths 1 and 2. IPL 32, 171–176 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Borradaile, G., Kenyon-Mathieu, C., Klein, P.: A polynomial-time approximation scheme for Steiner tree in planar graphs. In: 18th SODA, pp. 1285–1294 (2007)

    Google Scholar 

  7. Erickson, R., Monma, C., Veinott, A.: Send-and-split method for minimum-concave-cost network flows. Mathematics of Operations Research 12, 634–664 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  8. Garey, M., Johnson, D.: The rectilinear Steiner tree problem is NP-complete. SIAM J. Appl. Math. 32(4), 826–834 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  9. Henzinger, M., Klein, P., Rao, S., Subramanian, S.: Faster shortest-path algorithms for planar graphs. J. Comput. System Sci. 55(1), 3–23 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hougardy, S., Prömel, H.J.: A 1.598 approximation algorithm for the Steiner problem in graphs. In: 10th SODA, pp. 448–453 (1999)

    Google Scholar 

  11. Karp, R.: On the computational complexity of combinatorial problems. Networks 5, 45–68 (1975)

    MATH  MathSciNet  Google Scholar 

  12. Karpinski, M., Zelikovsky, A.: New approximation algorithms for the Steiner tree problem. Journal of Combinatorial Optimization 1, 47–65 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Klein, P.: A linear-time approximation scheme for planar weighted TSP. In: 46th FOCS, p. 647 (2005)

    Google Scholar 

  14. Kou, L., Markowsky, G., Berman, L.: A fast algorithm for Steiner trees. Acta Informatica 15, 141–145 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mehlhorn, K.: Approximation algorithm for the Steiner problem in graphs. IPL 27(3), 125–128 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mitchell, J.: Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric tsp, k-mst, and related problems. SIAM J. Comput. 28(4), 1298–1309 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Prömel, H.J., Steger, A.: RNC approximation algorithms for the Steiner problem. In: 39th STOC. LNCS, vol. 1200, pp. 559–570. Springer, Heidelberg (1997)

    Google Scholar 

  18. Provan, J.: An approximation scheme for finding Steiner trees with obstacles. SIAM J. Comput. 17, 920–934 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  19. Provan, J.: Convexity and the Steiner tree problem. Networks 18, 55–72 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rao, S., Smith, W.: Approximating geometrical graphs via spanners and banyans. In: 30th STOC, pp. 540–550 (1998)

    Google Scholar 

  21. Robins, G., Zelikovsky, A.: Tighter bounds for graph Steiner tree approximation. SIAM J. Discret. Math. 19(1), 122–134 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Takahashi, H., Matsuyama, A.: An approximate solution for the Steiner problem in graphs. Mathematica Japonicae 24, 571–577 (1980)

    MathSciNet  Google Scholar 

  23. Widmayer, P.: A fast approximation algorithm for Steiner’s problem in graphs. In: Tinhofer, G., Schmidt, G. (eds.) WG 1986. LNCS, vol. 246, pp. 17–28. Springer, Heidelberg (1987)

    Google Scholar 

  24. Wu, Y., Widmayer, P., Wong, C.: A faster approximation algorithm for the Steiner problem in graphs. Acta informatica 23(2), 223–229 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zelikovsky, A.: Better approximation bounds for the network and Euclidean Steiner tree problems. Technical Report CS-96-06, University of Virginia (1994)

    Google Scholar 

  26. Zelikovsky, A.: An 11/6-approximation algorithm for the network Steiner problem. Algorithmica 9, 463–470 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank Dehne Jörg-Rüdiger Sack Norbert Zeh

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Borradaile, G., Klein, P.N., Mathieu, C. (2007). Steiner Tree in Planar Graphs: An O(nlogn) Approximation Scheme with Singly-Exponential Dependence on Epsilon. In: Dehne, F., Sack, JR., Zeh, N. (eds) Algorithms and Data Structures. WADS 2007. Lecture Notes in Computer Science, vol 4619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73951-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73951-7_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73948-7

  • Online ISBN: 978-3-540-73951-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics