Computing the Visibility Map of Fat Objects | SpringerLink
Skip to main content

Computing the Visibility Map of Fat Objects

  • Conference paper
Algorithms and Data Structures (WADS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4619))

Included in the following conference series:

Abstract

We give an output-sensitive algorithm for computing the visibility map of a set of n constant-complexity convex fat polyhedra or curved objects in 3-space. Our algorithm runs in O((n + k) polylog n) time, where k is the combinatorial complexity of the visibility map. This is the first algorithm for computing the visibility map of fat objects that does not require a depth order on the objects and is faster than the best known algorithm for general objects. It is also the first output-sensitive algorithm for curved objects that does not require a depth order.

This research was supported by the Netherlands’ Organisation for Scientific Research (NWO) under project no. 639.023.301.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwal, P.K., Matoušek, J.: Ray shooting and parametric search. SIAM Journal on Computing 22(4), 794–806 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bentley, J., Ottmann, T.: Algorithms for reporting and counting geometric intersections. IEEE Transactions on Computers 28, 643–647 (1979)

    Article  MATH  Google Scholar 

  3. de Berg, M.: Ray Shooting, Depth Orders and Hidden Surface Removal. LNCS, vol. 703. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  4. de Berg, M.: Vertical ray shooting for fat objects. In: Proc. 21st Annual Symposium on Computational Geometry, pp. 288–295 (2005)

    Google Scholar 

  5. de Berg, M.: Improved bounds for the union complexity of fat objects. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 116–127. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. de Berg, M., Gray, C.: Vertical ray shooting and computing depth orders for fat objects. In: Proc. 17th Annual Symposium on Discrete Algorithms, pp. 494–503 (2006)

    Google Scholar 

  7. de Berg, M., Overmars, M.H.: Hidden-surface removal for c-oriented polyhedra. Comput. Geom. Theory Appl. 1, 247–268 (1992)

    MATH  Google Scholar 

  8. de Berg, M., Streppel, M.: Approximate range searching using binary space partitions. In: Proc. 24th Conference on Foundations of Software Technology and Theoretical Computer Science, pp. 110–121 (2004)

    Google Scholar 

  9. de Berg, M., van der Stappen, A.F., Vleugels, J., Katz, M.J.: Realistic input models for geometric algorithms. Algorithmica 34(1), 81–97 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bern, M.: Hidden surface removal for rectangles. J. Comp. Syst. Sciences 40, 49–69 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Duncan, C.: Balanced Aspect Ratio Trees. PhD thesis, Johns Hopkins University (1999)

    Google Scholar 

  12. Duncan, C., Goodrich, M., Kobourov, S.: Balanced aspect ratio trees: Combining the advantages of k-d trees and octtrees. In: Proc. 10th Annual ACM-SIAM Sympos. on Discrete Algorithms, pp. 300–309 (1999)

    Google Scholar 

  13. Goodrich, M.T., Atallah, M.J., Overmars, M.H.: An input-size/output-size trade-off in the time-complexity of rectilinear hidden surface removal. In: Paterson, M.S. (ed.) Automata, Languages and Programming. LNCS, vol. 443, pp. 689–702. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  14. Güting, R.H., Ottmann, T.: New algorithms for special cases of the hidden line elimination problem. Comp. Vision, Graphics and Image Processing 40, 188–204 (1987)

    Article  Google Scholar 

  15. Katz, M.J., Overmars, M., Sharir, M.: Efficient hidden surface removal for objects with small union size. Computational Geometry: Theory and Applications 2, 223–234 (1992)

    MATH  MathSciNet  Google Scholar 

  16. Kirkpatrick, D.: Optimal search in planar subdivisions. SIAM J. Comput. 12, 28–35 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  17. McKenna, M.: Worst-Case Optimal Hidden Surface Removal. ACM Trans. Graphics 6, 19–28 (1987)

    Article  Google Scholar 

  18. Pach, J., Tardos, G.: On the boundary complexity of the union of fat triangles. SIAM J. Comput. 31, 1745–1760 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Preparata, F.P., Vitter, J.S., Yvinec, M.: Computation of the axial view of a set of isothetic parallellipipes. ACM Trans. Graphics 9, 278–300 (1990)

    Article  MATH  Google Scholar 

  20. Reif, J., Sen, S.: An efficient out-sensitive hidden surface removal algorithm and its parallelization. In: Proc. 4th Annual Symposium on Computational Geometry, pp. 193–200 (1988)

    Google Scholar 

  21. Sharir, M., Overmars, M.H.: A simple method for output-sensitive hidden surface removal. ACM Trans. Graphics 11, 1–11 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank Dehne Jörg-Rüdiger Sack Norbert Zeh

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Berg, M., Gray, C. (2007). Computing the Visibility Map of Fat Objects. In: Dehne, F., Sack, JR., Zeh, N. (eds) Algorithms and Data Structures. WADS 2007. Lecture Notes in Computer Science, vol 4619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73951-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73951-7_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73948-7

  • Online ISBN: 978-3-540-73951-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics