Non-uniform B-Spline Subdivision Using Refine and Smooth | SpringerLink
Skip to main content

Non-uniform B-Spline Subdivision Using Refine and Smooth

  • Conference paper
Mathematics of Surfaces XII (Mathematics of Surfaces 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4647))

Included in the following conference series:

Abstract

Subdivision surfaces would be useful in a greater number of applications if an arbitrary-degree, non-uniform scheme existed that was a generalisation of NURBS. As a step towards building such a scheme, we investigate non-uniform analogues of the Lane-Riesenfeld ‘refine and smooth’ subdivision paradigm. We show that the assumptions made in constructing such an analogue are critical, and conclude that Schaefer’s global knot insertion algorithm is the most promising route for further investigation in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boehm, W.: Inserting new knots into B-spline curves. Computer-Aided Design 12(4), 199–201 (1980)

    Article  Google Scholar 

  2. Cohen, E., Lyche, T., Riesenfeld, R.: Discrete B-splines and Subdivision Techniques in Computer-Aided Geometric Design and Computer Graphics. Computer Graphics and Image Processing 14(2), 87–111 (1980)

    Article  Google Scholar 

  3. Gasciola, G., Romani, L.: A general matrix representation for non-uniform B-spline subdivision with boundary control. Draft paper (2006)

    Google Scholar 

  4. Goldman, R., Schaefer, S.: Global Knot Insertion Algorithms. Presentation at the University of Kaiserslautern (January 17, 2007)

    Google Scholar 

  5. Goldman, R., Warren, J.: An extension of Chaiken’s algorithm to B-spline curves with knots in geometric progression. CVGIP: Graphical Models and Image Processing 55(1), 58–62 (1993)

    Article  Google Scholar 

  6. Gregory, J., Qu, R.: Nonuniform corner cutting. Computer Aided Geometric Design 13(8), 763–772 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Lane, J., Riesenfeld, R.: A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 2(1), 35–46 (1980)

    Article  MATH  Google Scholar 

  8. Lyche, T., Morken, K.: Making the OSLO Algorithm More Efficient. SIAM Journal on Numerical Analysis 23(3), 663–675 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ramshaw, L.: Blossoming: A Connect-the-Dots Approach to Splines. Technical Report 19, Digital Systems Research Center (1987)

    Google Scholar 

  10. Sederberg, T., Zheng, J., Sewell, D., Sabin, M.: Non-Uniform Recursive Subdivision Surfaces. In: Proceedings of the 25th annual conference on Computer Graphics and Interactive Techniques, pp. 387–394 (1998)

    Google Scholar 

  11. Warren, J.: Binary subdivision schemes for functions over irregular knot sequences. In: Dæhlen, M., Lyche, T., Schumaker, L.L. (eds.) Mathematical Methods for Curves and Surfaces. Vanderbilt U.P, pp. 543–562 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ralph Martin Malcolm Sabin Joab Winkler

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cashman, T.J., Dodgson, N.A., Sabin, M.A. (2007). Non-uniform B-Spline Subdivision Using Refine and Smooth. In: Martin, R., Sabin, M., Winkler, J. (eds) Mathematics of Surfaces XII. Mathematics of Surfaces 2007. Lecture Notes in Computer Science, vol 4647. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73843-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73843-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73842-8

  • Online ISBN: 978-3-540-73843-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics