Surfaces with Piecewise Linear Support Functions over Spherical Triangulations | SpringerLink
Skip to main content

Surfaces with Piecewise Linear Support Functions over Spherical Triangulations

  • Conference paper
Mathematics of Surfaces XII (Mathematics of Surfaces 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4647))

Included in the following conference series:

  • 1268 Accesses

Abstract

Given a smooth surface patch we construct an approximating piecewise linear structure. More precisely, we produce a mesh for which virtually all vertices have valency three. We present two methods for the construction of meshes whose facets are tangent to the original surface. These two methods can deal with elliptic and hyperbolic surfaces, respectively. In order to describe and to derive the construction, which is based on a projective duality, we use the so–called support function representation of the surface and of the mesh, where the latter one has a piecewise linear support function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Almegaard, H.: The Stringer System—a Truss Model of Membrane Shells for Analysis and Design of Boundary Conditions. Int. J. Space Structures 19, 1–10 (2004)

    Article  Google Scholar 

  2. Bonnesen, T., Fenchel, W.: Theory of Convex Bodies. BCS Associates, Moscow, Idaho (1987)

    Google Scholar 

  3. Brückner, M.: Vielecke und Vielflache—Theorie und Geschichte. Teubner, Leipzig (1900)

    Google Scholar 

  4. Cutler, B., Whiting, E.: Constrained Planar Remeshing for Architecture. In: Symposium on Geometry Processing 2006, Poster proceedings (electronic), p. 5 (2006), http://sgp2006.sc.unica.it/program/PosterProceedings.pdf

  5. Groemer, H.: Geometric Applications of Fourier Series and Spherical Harmonics. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  6. Gruber, P.M., Wills, J.M. (eds.): Handbook of Convex Geometry. North-Holland, Amsterdam (1993)

    Google Scholar 

  7. Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric Design. AK Peters, Wellesley, Mass (1996)

    Google Scholar 

  8. Hoschek, J.: Dual Bézier Curves and Surfaces. In: Barnhill, R.E., Boehm, W. (eds.) Surfaces in Computer Aided Geometric Design, pp. 147–156. North-Holland, Amsterdam (1983)

    Google Scholar 

  9. Kawarahada, H., Sugihara, K.: Dual Subdivision: A New Class of Subdivision Schemes using Projective Duality. In: Jorge, J., Skala, V. (eds.) Proc. WSCG 2006, pp. 9–16. University of West Bohemia, Plzen (2006)

    Google Scholar 

  10. Liu, Y., Pottmann, H., Wallner, J., Yang, Y., Wang, W.: Geometric Modeling with Conical Meshes and Developable Surfaces. ACM Trans. Graphics 25, 681–689 (2006)

    Article  Google Scholar 

  11. Patanè, G., Spagnuolo, M.: Triangle Mesh Duality: Reconstruction and Smoothing. In: Wilson, M.J., Martin, R.R. (eds.) Mathematics of Surfaces. LNCS, vol. 2768, pp. 111–128. Springer, Heidelberg (2003)

    Google Scholar 

  12. Pottmann, H., Wallner, J.: The Focal Geometry of Circular and Conical Meshes. Adv. Comput. Math. (to appear)

    Google Scholar 

  13. Ros, L., Sugihara, K., Thomas, F.: Towards Shape Representation using Trihedral Mesh Projections. The Visual Computer 19, 139–150 (2003)

    MATH  Google Scholar 

  14. Sabin, M.: A Class of Surfaces Closed under Five Important Geometric Operations. Technical Report VTO/MS/207, British Aircraft Corporation (1974), Available at http://www.damtp.cam.ac.uk/user/na/people/Malcolm/vtoms/vtos.html

  15. Šír, Z., Gravesen, J., Jüttler B.: Curves and surfaces represented by polynomial support functions. SFB report no. 2006-36 (2006), Available at http://www.sfb013.uni-linz.ac.at

  16. Weisstein, E.W.: Dual Polyhedron. From MathWorld — A Wolfram Web Resource. http://mathworld.wolfram.com/DualPolyhedron.html

  17. Wenninger, M.J.: Dual Models. Cambridge University Press, Cambridge (1983)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ralph Martin Malcolm Sabin Joab Winkler

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Almegaard, H., Bagger, A., Gravesen, J., Jüttler, B., Šír, Z. (2007). Surfaces with Piecewise Linear Support Functions over Spherical Triangulations. In: Martin, R., Sabin, M., Winkler, J. (eds) Mathematics of Surfaces XII. Mathematics of Surfaces 2007. Lecture Notes in Computer Science, vol 4647. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73843-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73843-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73842-8

  • Online ISBN: 978-3-540-73843-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics