Type II Fuzzy Image Segmentation | SpringerLink
Skip to main content

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 220))

Abstract

Type II fuzzy sets are high-level representation of vague data with, compared to ordinary fuzzy sets, greater capability for uncertainty management. Theoretical aspects of type II fuzzy systems have been extensively investigated, and the research is still ongoing. Many image processing tasks accompanied with different types of imperfection. In this chapter, the applications of type II fuzzy sets for image segmentation will be discussed. Global and spatial type II segmentation schemes will be systematically introduced and examples will be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. Burillo, H. Bustince, Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets, Fuzzy Sets and Systems, Vol. 78, pp. 305–316, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  2. T. Chaira, A.K. Ray, Segmentation using fuzzy divergence, Pattern Recognition Letters, Vol. 24(12), pp. 1837–1844, 2003.

    Article  Google Scholar 

  3. Z. Chi, H. Yan, T. Pham, Fuzzy Algorithms with Applications to Image Processing and Pattern Recognition, World Scientific, Singapore, 1997.

    Google Scholar 

  4. A. De Luca, S. Termini, A definition of a nonprobabilistic entropy in the setting of fuzzy set theory, Information and Control, Vol. 20, pp. 301–312, 1972.

    Article  MathSciNet  Google Scholar 

  5. R.M. Haralick, Image segmentation survey, in Fundamentals in Computer Vision, O. D. Faugeras (ed.), Cambridge University Press, Cambridge, pp. 209–224, 1983.

    Google Scholar 

  6. L.K. Huang, M.J. Wang, Image thresholding by minimizing the measure of fuzziness. Pattern Recognition, Vol. 28, pp. 41–51, 1995.

    Article  Google Scholar 

  7. C.V. Jawahar, P.K. Biswas, A.K. Ray, Investigations on Fuzzy Thresholding Based on Fuzzy Clustering, Patern Recognition, Vol. 30(10), pp. 1605–1613, 1997.

    Article  MATH  Google Scholar 

  8. C.V. Jawahar, P.K. Biswas, A.K. Ray, Analysis of fuzzy thresholding schemes, Patern Recognition, Vol. 33(8), pp. 1339–1349, 2000.

    Article  Google Scholar 

  9. A. Kaufmann, Introduction to the Theory of Fuzzy Subsets - Fundamental Theoretical Elements, Vol. 1. Academic Press, New York, 1975.

    Google Scholar 

  10. R. Krishnapuram, J.M. Keller, A possibilistic approach to clustering, IEEE Transactions on Fuzzy Systems, Vol. 1(2), pp. 98–110, 1993.

    Article  Google Scholar 

  11. R. Kruse, F. Höppner, F., Klawonn, Fuzzy-Clusteranalyse (in German), Vieweg, Braunschweig, 1997.

    Google Scholar 

  12. K.C. Lin, Fast image thresholding by finding the zero(s) of the first derivative of between-class variance, Machine Vision and Applications, Vol. 13(5-6), pp. 254–262, 2003.

    Article  Google Scholar 

  13. J.M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems, Prentice Hall, USA, 2001.

    MATH  Google Scholar 

  14. J.M. Mendel and R.I. Bob John, Type-2 Fuzzy Sets Made Simple, IEEE Transactions on Fuzzy Systems, Vol. 10(2), pp. 117–127, 2002.

    Article  Google Scholar 

  15. H.B. Mitchell, Pattern recognition using type-II fuzzy sets, Information Sciences, Vol. 170, pp. 409–418, 2005.

    Article  Google Scholar 

  16. P.L. Rosin, Unimodal thresholding, Pattern Recognition, Vol. 34(11), pp. 2083–2096, 2001.

    Article  MATH  Google Scholar 

  17. S.K. Pal, A. Ghosh, A., Fuzzy geometry in image analysis, Fuzzy Sets and Systems, Vol. 48, pp. 23–40, 1992.

    Article  MathSciNet  Google Scholar 

  18. S.K. Pal, A. Rosenfeld, Image enhancement and thresholding by optimization of fuzzy compactness, Pattern Recognition Letters, Vol. 7, pp. 77–86, 1988.

    Article  MATH  Google Scholar 

  19. N.R. Pal, S.K. Pal, A Review on Image Segmentation Techniques. Pattern Recognition, Vol. 26, pp. 1277–1294, 1993.

    Article  Google Scholar 

  20. S.K. Pal, A. Ghosh, Index of area coverage of fuzzy image subsets and object extraction, Pattern Recognition Letters, Vol. 11, pp. 831–841, 1990.

    Article  MATH  Google Scholar 

  21. N.R. Pal, D. Bhandari, D.D. Majumder, Fuzzy divergence, probability measure of fuzzy events and image thresholding, Patern Recognition Letters, Vol. 13, pp. 857–867, 1992.

    Article  Google Scholar 

  22. S.K. Pal, C.A. Murthy, Fuzzy thresholding: mathematical framework, bound functions and weighted moving average technique, Pattern Recognition Letters, Vol. 11, pp. 197–206, 1990.

    Article  MATH  Google Scholar 

  23. N.R. Pal, J.C. Bezdek, Measures of Fuzziness: A Review and several New Classes,. In: Yager, R.R., Zadeh, L.A. (eds.): Fuzzy Sets, Neural Networks, and Soft Computing, Van Nostrand Reinhold, New York, pp. 194–212, 1994.

    Google Scholar 

  24. R. Sambuc, Functions Φhi-flous. Aplication a laide au diagnostic en pathologie thyrodene, Thse, Universite de Marseille, 1975.

    Google Scholar 

  25. B. Sankur, M. Sezgin, Survey over image thresholding techniques and quantitative performance evaluation, Journal of Electronic Imaging, Vol. 13(1), pp. 146–165, 2004.

    Article  Google Scholar 

  26. L. Snidaro, G.L. Foresti, Real-time thresholding with Euler numbers, Pattern Recognition Letters, Vol. 24(9-10), pp. 1543–1554, 2003.

    Article  Google Scholar 

  27. W. Tao, H. Burkhardt, An Effective Thresholding Method Using a Fuzzy Compactness Measure, Proc. of 12th ICIP, Vol. 1, pp. 47–51, 1994.

    Google Scholar 

  28. H.R. Tizhoosh, Über Binarisierung und Potentiale der Fuzzy-Ansätze. In: Kruse, R., Dassow, J., Informatik’98, Springer, pp. 97–106, 1998.

    Google Scholar 

  29. H.R. Tizhoosh, Fuzzy Image Processing (in German), Springer, Heidelberg, Germany, 1998.

    Google Scholar 

  30. H.R. Tizhoosh, G. Krell, T. Lilienblum, C.J. Moore, B. Michaelis, Enhancement and Associative Restoration of Electronic Portal Images in Radiotherapy. International Journal of Medical Informatics, Elsevier Science Ireland, Vol. 49(2), pp. 157–171, 1998.

    Google Scholar 

  31. H.R. Tizhoosh, H. Hauß ecker, H., Fuzzy Image Processing: An Overview. In: Jähne, B., Hauß ecker, H., Geiß ler, P. (Eds.), Handbook on Computer Vision and Applications, Academic Press, Boston, 1998.

    Google Scholar 

  32. H.R. Tizhoosh, Image Thresholding Using Type II Fuzzy Sets, Pattern Recognition, Vol. 38, pp. 2363–2372, 2005.

    Article  Google Scholar 

  33. H. Yan, Unified formulation of a class of image thresholding techniques, Pattern Recognition, Vol. 29(12), pp. 2025–2032, 1996.

    Article  Google Scholar 

  34. W. A. Yasnoff, J. K. Mui, and J. W. Bacus, Error measures for scene segmentation, Pattern Recogn, Vol. 9, pp. 217–231, 1977.

    Article  Google Scholar 

  35. Q. Wang, Z. Chi, R. Zhao, Image Thresholding by Maximizing the Index of Nonfuzziness of the 2-D Grayscale Histogram, Computer Vision and Image Understanding, Vol. 85(2), pp. 100–116, 2002.

    Article  MATH  Google Scholar 

  36. S.D. Zenzo, L. Cinque, S. Levialdi, S., Image Thresholding Using Fuzzy Entropies, SMC, Vol. 28(1), pp. 15–23, 1998.

    Google Scholar 

  37. L.A. Zadeh, Fuzzy sets, Information and Control, Vol. 8, pp. 338–353, 1965.

    Article  MATH  MathSciNet  Google Scholar 

  38. Y. Zhang, A survey on evaluation methods for image segmentation, Pattern Recognition, Vol. 29(8), pp. 1335–1346, 1996.

    Article  Google Scholar 

  39. Y.-J. Zhang, Advances in Image And Video Segmentation, IRM Press, 2006.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tizhoosh, H.R. (2008). Type II Fuzzy Image Segmentation. In: Bustince, H., Herrera, F., Montero, J. (eds) Fuzzy Sets and Their Extensions: Representation, Aggregation and Models. Studies in Fuzziness and Soft Computing, vol 220. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73723-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73723-0_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73722-3

  • Online ISBN: 978-3-540-73723-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics