Automatic Decidability and Combinability Revisited | SpringerLink
Skip to main content

Automatic Decidability and Combinability Revisited

  • Conference paper
Automated Deduction – CADE-21 (CADE 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4603))

Included in the following conference series:

Abstract

We present an inference system for clauses with ordering constraints, called Schematic Paramodulation. Then we show how to use Schematic Paramodulation to reason about decidability and stable infiniteness of finitely presented theories. We establish a close connection between the two properties: if Schematic Paramodulation for a theory halts then the theory is decidable; and if, in addition, Schematic Paramodulation does not derive the trivial equality X = Y then the theory is stably infinite. Decidability and stable infiniteness of component theories are conditions required for the Nelson-Oppen combination method. Schematic Paramodulation is loosely based on Lynch-Morawska’s meta-saturation but it differs in several ways. First, it uses ordering constraints instead of constant constraints. Second, inferences into constrained variables are possible in Schematic Paramodulation. Finally, Schematic Paramodulation uses a special deletion rule to deal with theories for which Lynch-Morawska’s meta-saturation does not halt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: On a Rewriting Approach to Satisfiability Procedures: Extension, Combination of Theories and an Experimental Appraisal. In: Gramlich, B. (ed.) Frontiers of Combining Systems. LNCS (LNAI), vol. 3717, pp. 65–80. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Armando, A., Ranise, S., Rusinowitch, M.: A Rewriting Approach to Satisfiability Procedures. Info. and Comp. 183(2), 140–164 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bonacina, M.P., Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Decidability and Undecidability Results for Nelson-Oppen and Rewrite-Based Decision Procedures. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 513–527. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Dershowitz, N., Jouannaud, J.-P.: Handbook of Theoretical Computer Science. In: Rewrite Systems, ch. 6, vol. B, pp. 244–320. Elsevier, North-Holland (1990)

    Google Scholar 

  5. Kirchner, H., Ranise, S., Ringeissen, C., Tran, D.-K.: Automatic Combinability of Rewriting-Based Satisfiability Procedures. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 542–556. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Lynch, C., Morawska, B.: Automatic decidability. In: Proc. of 17th IEEE Symposium on Logic in Computer Science, Copenhagen, Copenhagen, Denmark, pages 7. IEEE Computer Society Press, Los Alamitos (2002)

    Google Scholar 

  7. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Trans. on Programming Languages and Systems 1(2), 245–257 (1979)

    Article  MATH  Google Scholar 

  8. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 7, vol. I, pp. 371–443. Elsevier, North-Holland (2001)

    Chapter  Google Scholar 

  9. van Dalen, D.: Logic and Structure, 2nd edn. Springer, Heidelberg (1989)

    MATH  Google Scholar 

  10. Weidenbach, C.: Spass version 0.49. Journal of Automated Reasoning 14(2), 247–252 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank Pfenning

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lynch, C., Tran, DK. (2007). Automatic Decidability and Combinability Revisited. In: Pfenning, F. (eds) Automated Deduction – CADE-21. CADE 2007. Lecture Notes in Computer Science(), vol 4603. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73595-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73595-3_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73594-6

  • Online ISBN: 978-3-540-73595-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics