An Improved SVM Classifier for Medical Image Classification | SpringerLink
Skip to main content

An Improved SVM Classifier for Medical Image Classification

  • Conference paper
Rough Sets and Intelligent Systems Paradigms (RSEISP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4585))

Abstract

Support Vector Machine (SVM) has high classifying accuracy and good capabilities of fault-tolerance and generalization. The Rough Set Theory (RST) approach has the advantages on dealing with a large amount of data and eliminating redundant information. In this paper, we join SVM classifier with RST which we call the Improved Support Vector Machine (ISVM) to classify digital mammography. The experimental results show that this ISVM classifier can get 96.56% accuracy which is higher about 3.42% than 92.94% using SVM, and the error recognition rates are close to 100% averagely.

This paper is supported by National Science Foundation No. 60573096 and Gansu province Science Foundation of China No. 3ZS 051-A25-042.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Vapnik, V.N.: The nature of statistical learning theory. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  2. Osareh, A., Mirmehdil, M., Thomas, B., Markham, R.: Comparative Exudate Classification Using Support Vector Machines and Neural Networks. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2489, pp. 413–420. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Foody, G.M., Mathur, A.: A Relative Evaluation of Multiclass Image Classification by Support Vector Machines. IEEE Transactions on Geoscience and Remote Sensing 42(6), 1335–1343 (2004)

    Article  Google Scholar 

  4. Ma, J.S., Theiler, J., Perkins, S.: Accurate On-line Support Vector Regression. Neural Computation 15(11), 2683–2703 (2003)

    Article  MATH  Google Scholar 

  5. Ben-Hur, A., Horn, D., Siegelmann, H.T., Vapnik, V.: Support Vector Clustering. Journal of Machine Learning Research 2(2), 125–137 (2001)

    Article  Google Scholar 

  6. Kim, K.J.: Financial Time Series Forecasting Using Support Vector Machines. Neuro-computing 55(1), 307–319 (2003)

    Google Scholar 

  7. Dibike, Y.B., Velickov, S., Solomatine, D.: Support Vector Machines: Review and Applications in Civil Engineering. In: Proc. of the 2nd Joint Workshop on Application of AI in Civil Engineering, pp. 215–218 (2000)

    Google Scholar 

  8. Wang, L.P. (ed.): Support Vector Machines: Theory and Application. Springer, Heidelberg (2005)

    Google Scholar 

  9. Schlkopf, B., Smola, A J.: Learning with Kernel-Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002)

    Google Scholar 

  10. Pawlak, Z.W.: Rough Sets. International Journal of Information and Computer Science 11(5), 341–356 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lin, T.Y.: Introduction to the Special Issue on Rough Sets. International Journal of Approximate Reasoning 15(4), 287–289 (1996)

    Article  Google Scholar 

  12. Wang, G.Y.: Rough Set Theory and Knowledge Acquisition. Xi’an Jiaotong University Press, Xi’an (2001)

    Google Scholar 

  13. (2006-9), http://www.wiau.man.ac.uk/services/MIAS/MIASweb.html

  14. Pawlak, Z.W.: Rough Sets and Intelligent Data Analysis. Information sciences (147), 1–12 (2002)

    Google Scholar 

  15. Antonie, M.-L., Zaiane, O.R., Coman, A.: Application of data mining techniques for medical image classification. In: Proc. of Second Intl. Workshop on Multimedia Data Mining (MDM/KDD’2001) in conjunction with Seventh ACM SIGKDD, San Francisco, pp. 94–101. ACM Press, New York (2001)

    Google Scholar 

  16. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Addison-Wesley, Reading (1993)

    Google Scholar 

  17. Hu, X., Cercone, N.: Data Mining Via Generalization, Discretization and Rough Set Feature Selection [J]. Knowledge and Information System: An International Journal, 1(1) (1999)

    Google Scholar 

  18. Chang.C., Lin, C. (2001) LIBSVM, http://www.csie.ntu.edu.tw/~cjlin/libsvm,2006-9

Download references

Author information

Authors and Affiliations

Authors

Editor information

Marzena Kryszkiewicz James F. Peters Henryk Rybinski Andrzej Skowron

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jiang, Y., Li, Z., Zhang, L., Sun, P. (2007). An Improved SVM Classifier for Medical Image Classification. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds) Rough Sets and Intelligent Systems Paradigms. RSEISP 2007. Lecture Notes in Computer Science(), vol 4585. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73451-2_80

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73451-2_80

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73450-5

  • Online ISBN: 978-3-540-73451-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics