Attribute Reduction Based on Fuzzy Rough Sets | SpringerLink
Skip to main content

Attribute Reduction Based on Fuzzy Rough Sets

  • Conference paper
Rough Sets and Intelligent Systems Paradigms (RSEISP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4585))

Abstract

In T −fuzzy rough sets a fuzzy T −similarity relation is employed to describe the similar degree between two objects and to construct lower and upper approximations for arbitrary fuzzy sets. The existing researches on T −fuzzy rough sets mainly concentrate on constructive and axiomatic approaches of lower and upper approximation operators. In this paper we define attribute reduction based on T −fuzzy rough sets. The structure of proposed attribute reduction is investigated in detail by the approach of discernibility matrix. At last an example is proposed to illustrate our idea in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Pawlak, Z.: Rough Sets. Internat. J. Comput. Inform. Sci. 11(5), 341–356 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  • Pawlak, Z.: Rough Sets: Theoretical aspects of Reasoning about Data. Kluwer academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  • Slowinski, R. (ed.): Intelligent decision support: Handbook of applications and advances of the rough sets theory. Kluwer Academic Publishers, Boston (1992)

    MATH  Google Scholar 

  • Ziarko, W.P. (ed.): Rough sets, fuzzy sets and knowledge discovery. Workshop in Computing. Springer, London (1994)

    MATH  Google Scholar 

  • Jensen, R., Shen, Q.: Qiang Shen: Fuzzy-rough attributes reduction with application to web categorization. Fuzzy Sets and Systems 141, 469–485 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Yeung, D.S., Degang, C., Tsang, C.C., Lee, W.T., Xizhao, W.: On the Generalization of Fuzzy Rough Sets. IEEE Trans. on Fuzzy Systems 13(3), 343–361 (2005)

    Article  Google Scholar 

  • Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, pp. 331–362. Kluwer Academic Publishers, Dordrecht (1992)

    Google Scholar 

  • Fernandez Salido, J.M., Murakami, S.: Rough set analysis of a general type of fuzzy data using transitive aggregations of fuzzy similarity relations. Fuzzy Sets and Systems 139, 635–660 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. Internat. J. Genaral Systems 17(2-3), 191–209 (1990)

    Article  MATH  Google Scholar 

  • Dubois, D., Prade, H.: Putting rough sets and fuzzy sets together. In: Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, Kluwer Academic Publishers, Dordrecht (1992)

    Google Scholar 

  • Weizhi, W., Wenxiu, Z.: Constructive and axiomatic approaches of fuzzy approximation operators. Information Sciences 159(3-4), 233–254 (2004)

    Article  MathSciNet  Google Scholar 

  • Weizhi, W., Jusheng, M., Wenxiu, Z.: Generalized fuzzy rough sets. Information Sciences 151, 263–282 (2003)

    Article  MathSciNet  Google Scholar 

  • Morsi, N.N., Yakout, M.M.: Axiomatics for fuzzy rough sets. Fuzzy Sets and Systems 100, 327–342 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Jusheng, M., Wenxiu, Z.: An axiomatic characterization of a fuzzy generalization of rough sets. Information Sciences 160(1-4), 235–249 (2004)

    Article  MathSciNet  Google Scholar 

  • Radzikowska, A.M., Kerre, E.E.: A comparative study of fuzzy rough sets. Fuzzy Sets and Systems 126, 137–155 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Rajen, B.B., Gopal, M.: On fuzzy rough sets approach to feature selection. Pattern Recognition Letters 26(7), 965–975 (2005)

    Article  Google Scholar 

  • Degang, C., Wenxiu, Z., Yeung, D.S., Tsang, E.C.C.: Rough approximations on a complete completely distributive lattice with applications to generalized rough sets. Information Sciences 176, 1829–1848 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Greco, S., Inuiguchi, M., Slowinski, R.: A new proposal for fuzzy rough approximations and gradual decision rule representation. In: Peters, J.F., Skowron, A., Dubois, D., Grzymała-Busse, J.W., Inuiguchi, M., Polkowski, L. (eds.) Transactions on Rough Sets II. LNCS, vol. 3135, pp. 319–342. Springer, Heidelberg (2004)

    Google Scholar 

  • Cattaneo, G.: Fuzzy extension of rough sets theory. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 275–282. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  • Yao, Y.Y.: Combination of rough and fuzzy sets based on level sets. In: Rough Sets and Data mining: Analysis for Imprecise Data, pp. 301–321. Kluwer Academic Publishers, Dordrecht (1997)

    Google Scholar 

  • Bezdek, J.C., Harris, J.O.: Fuzzy partitions and relations: an axiomatic basis of clustering. Fuzzy Sets and Systems 84, 143–153 (1996)

    Article  MathSciNet  Google Scholar 

  • Sudkamp, T.: Similarity, interpolation, and fuzzy rule construction. Fuzzy Sets and Systems 58, 73–86 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Marzena Kryszkiewicz James F. Peters Henryk Rybinski Andrzej Skowron

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, D., Wang, X., Zhao, S. (2007). Attribute Reduction Based on Fuzzy Rough Sets. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds) Rough Sets and Intelligent Systems Paradigms. RSEISP 2007. Lecture Notes in Computer Science(), vol 4585. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73451-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73451-2_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73450-5

  • Online ISBN: 978-3-540-73451-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics