Improvement of Jarvis-Patrick Clustering Based on Fuzzy Similarity | SpringerLink
Skip to main content

Improvement of Jarvis-Patrick Clustering Based on Fuzzy Similarity

  • Conference paper
Applications of Fuzzy Sets Theory (WILF 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4578))

Included in the following conference series:

Abstract

Different clustering algorithms are based on different similarity or distance measures (e.g. Euclidian distance, Minkowsky distance, Jackard coefficient, etc.). Jarvis-Patrick clustering method utilizes the number of the common neighbors of the k-nearest neighbors of objects to disclose the clusters. The main drawback of this algorithm is that its parameters determine a too crisp cutting criterion, hence it is difficult to determine a good parameter set. In this paper we give an extension of the similarity measure of the Jarvis-Patrick algorithm. This extension is carried out in the following two ways: (i) fuzzyfication of one of the parameters, and (ii) spreading of the scope of the other parameter. The suggested fuzzy similarity measure can be applied in various forms, in different clustering and visualization techniques (e.g. hierarchical clustering, MDS, VAT). In this paper we give some application examples to illustrate the efficiency of the use of the proposed fuzzy similarity measure in clustering. These examples show that the proposed fuzzy similarity measure based clustering techniques are able to detect clusters with different sizes, shapes and densities. It is also shown that the outliers are also detectable by the proposed measure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anders, K.H.: A Hierarchical Graph-Clustering Approach to find Groups of Objects. In: Proceedings 5th ICA Workshop on Progress in Automated Map Generalization, IGN, Paris, France (April 28–30, 2003)

    Google Scholar 

  2. Ankerst, M., Breunig, M.M., Kriegel, H.-P., Sander, J.: Optics: ordering points to identify the clustering structure. In: SIGMOD 1999. Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, pp. 49–60. ACM Press, New York (1999)

    Chapter  Google Scholar 

  3. Bezdek, J.C., Hathaway, R.J.: VAT: A Tool for Visual Assessment of (Cluster) Tendency. In: Proc. IJCNN 2002, pp. 2225–2230. IEEE Press, Piscataway, N.J (2002)

    Google Scholar 

  4. Bicici, E., Yuret, D.: Locally Scaled Density Based Clustering. In: Roddick, J.F., Hornsby, K. (eds.) TSDM 2000. LNCS (LNAI), vol. 2007, Springer, Heidelberg (2001)

    Google Scholar 

  5. Doman, T.N., Cibulskis, J.M., Cibulskis, M.J., McCray, P.D., Spangler, D.P.: Algorithm5: A Technique for Fuzzy Similarity Clustering of Chemical Inventories. Journal of Chemical Information and Computer Sciences 36(6), 1195–1204 (1996)

    Article  Google Scholar 

  6. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, pp. 226–231 (1996)

    Google Scholar 

  7. Guha, S., Rastogi, R., Shim, K.: ROCK: a robust clustering algorithm for categorical attributes. In: Proc. of the 15th Intl Conf. On Data Eng., pp. 512–521 (1999)

    Google Scholar 

  8. Huang, X., Lai, W.: Clustering graphs for visualization via node similarities. Journal of Visual Languages and Computing 17, 225–253 (2006)

    Article  Google Scholar 

  9. Huband, J.M., Bezdek, J.C., Hathaway, R.J.: bigVAT: Visual assessment of cluster tendency for large data sets. Pattern Recognition 38(11), 1875–1886 (2005)

    Article  Google Scholar 

  10. Jarvis, R.A., Patrick, E.A.: Clustering Using a Similarity Measure Based on Shared Near Neighbors. IEEE Transactions on Computers C22, 1025–1034 (1973)

    Article  Google Scholar 

  11. Karypis, G., Han, E.-H., Kumar, V.: Chameleon: Hierarchical Clustering Using Dynamic Modeling. IEEE Computer 32(8), 68–75 (1999)

    Google Scholar 

  12. Zahn, C.T.: Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Transaction on Computers C20, 68–86 (1971)

    Article  Google Scholar 

  13. Yao, A.: On constructing minimum spanning trees in k-dimensional spaces and related problems. SIAM Journal on Computing, 721–736 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francesco Masulli Sushmita Mitra Gabriella Pasi

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vathy-Fogarassy, A., Kiss, A., Abonyi, J. (2007). Improvement of Jarvis-Patrick Clustering Based on Fuzzy Similarity. In: Masulli, F., Mitra, S., Pasi, G. (eds) Applications of Fuzzy Sets Theory. WILF 2007. Lecture Notes in Computer Science(), vol 4578. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73400-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73400-0_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73399-7

  • Online ISBN: 978-3-540-73400-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics