Abstract
In medical imaging, many applications require visualization and analysis of three-dimensional (3D) objects. Visualization is the process of exploring, transforming, and view data as images to gain understanding and insight into the data, which requires fast interactive speed and high image quality. In this paper, we describe the key techniques in medical image visualization. In order to improve ray casting rendering speed, a synthetically accelerated algorithm is proposed. Firstly, rendering algorithms are fully studied and compared. Secondly, proximity clouds algorithm has been selected and extended to continuous ray casting. Finally, the accelerated algorithm based on ray coherence has been realized. The experimental results on 3D medical image reconstruction are given, which show the medical image visualization technology has provided a powerful technology base for computer-aided diagnosis, virtual surgery and e-learning in medicine field.
Chapter PDF
Similar content being viewed by others
References
Maintz, J.B.A., Viergever, M.A.: A survey of medical image registration. Med. Image Anal. 2, 1–36 (1998)
Ashburner, J., Friston, K.J.: Nonlinear spatial normalization using basis function. Human Brain Mapping 7, 254–266 (1999)
Audette, M.A., Ferrie, F.P., Peters, T.M.: An alogorithmic overview of surface registration techniques for medical imaging. Med. Image Anal. 4, 201–217 (2000)
Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maxi-mization of mutual information. IEEE Trans. Med. Imaging 16, 187–198 (1997)
Borgefors, G.: Distance transformations in digital images. Comput. Vis. Graph. Image Process 34, 344–371 (1986)
Saito, T., Toriwaki, J.: New algorithms for Euclidian distance transformation of an N-dimensional digital picture with applications. Pattern Recognition 27, 1551–1565 (1994)
Bresson, X., Vandergheynst, P., Thiran, J.-P.: A Variational Model for Object Segmentation Using Boundary Information and Shape Prior Driven by the Mumford-Shah Functional. International Journal of Computer Vision 68(2), 145–162 (2006)
Heinonent, T., Dastidar, P., Kauppinen, P., Malmivuo, J., Eskola, H.: Semi-automatic tool for segmentation and volumetric analysis of medical images. Medical and Biological Engineering and Computing 36(3), 291–296 (1998)
Logeswaran, R., Eswaran, C.: Discontinuous Region Growing Scheme for Preliminary Detection of Tumor in MRCP Images. Journal of Medical Systems 30(4), 317–324 (2006)
Capowiez, Y., Pierret, A., Moran, C.J.: Characterisation of the three-dimensional structure of earthworm burrow systems using image analysis and mathematical morphology. Biology and Fertility of Soils 38(5), 301–310 (2003)
Heede, B.H.: Deteriorated watersheds can be restored: A case study. Environmental Management 3(3), 271–281 (1979)
Wismüller, A., Lange, O., Dersch, D.R., Leinsinger, G.L., Hahn, K., Pütz, B., Auer, D.: Cluster Analysis of Biomedical Image Time-Series. International Journal of Computer Vision 46(2), 103–128 (2002)
Salah, Z., Kastner, M., Dammann, F., Schwaderer, E., Maassen, M.M., Bartz, D., Straßer, W.: Preoperative planning of a complete mastoidectomy: semiautomatic segmentation and evaluation. International Journal of Computer Assisted Radiology and Surgery 1(4), 213–222 (2006)
Gu, L., Peters, T.: 3D segmentation of medical images using a fast multistage hybrid algorithm. Int J CARS 1, 23–31 (2006)
Jin-zhu, Y., Shu-ying, Z., Ying, H., Ji-hong, L., Xin-he, X.: Algorithm of segmentation of medical series image 3D reconstructs. Journal of system simulation 17(12), 2896–2900 (2005)
Amargós, J.P., Mancho, R.A.: Reconstruction of Surfaces from Cross Sections Using Skeleton Information. In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds.) CIARP 2003. LNCS, vol. 2905, pp. 180–187. Springer, Heidelberg (2003)
Westover, L.: Footprint evaluation for volume rendering. In: Proceedings of SIGGRAPH 1990. vol. 1009, pp. 367–376, ACM Press, New York (1990)
Lacroute, P.: Real-time volume rendering on shared memory multiprocessors using the shear-warp factorization. In: Parallel Rendering Symposium, pp. 15–21 (1995)
Kye, H., Oh, K.: High-Quality Shear-Warp Volume Rendering Using Efficient Supersampling and Pre-integration Technique. In: Pan, Z., Cheok, A., Haller, M., Lau, R.W.H., Saito, H., Liang, R. (eds.) ICAT 2006. LNCS, vol. 4282, pp. 624–632. Springer, Heidelberg (2006)
Malzbender, T.: Fourier volume rendering. ACM Transactions on Graphics 12(3), 233–250 (1993)
Napel, S., Dunne, S., Rutt, B.K.: Fast Fourier projection for MR angiography. Magnetic Resonance in Medicine 19, 393–405 (1991)
Yagel, R.: Towards real time volume rendering [ A ]. In: Proceedings of GRA PH ICON 1996 [ C ], Saint Petersburg, Russia, pp. 230–241 (1996)
Ying, H., Xinhe, X.: Accelerate Ray Casting Algorithm Base on Ray Coherence. Journal of Image and Graphics 9(2) (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liu, J., Ma, W., Liu, F., Hu, Y., Yang, J., Xu, X. (2007). Study and Application of Medical Image Visualization Technology. In: Duffy, V.G. (eds) Digital Human Modeling. ICDHM 2007. Lecture Notes in Computer Science, vol 4561. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73321-8_77
Download citation
DOI: https://doi.org/10.1007/978-3-540-73321-8_77
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73318-8
Online ISBN: 978-3-540-73321-8
eBook Packages: Computer ScienceComputer Science (R0)