Abstract
We present a method for the incorporation of regional image information in a 3-D graph-theoretic approach for optimal multiple surface segmentation. By transforming the multiple surface segmentation task into finding a minimum-cost closed set in a vertex-weighted graph, the optimal set of feasible surfaces with respect to an objective function can be found. In the past, this family of graph search applications only used objective functions which incorporated “on-surface” costs. Here, novel “in-region” costs are incorporated. Our new approach is applied to the segmentation of seven intraretinal layer surfaces of 24 3-D macular optical coherence tomography images from 12 subjects. Compared to an expert-defined independent standard, unsigned border positioning errors are comparable to the inter-observer variability (7.8 ± 5.0 μm and 8.1 ± 3.6 μm, respectively).
Preview
Unable to display preview. Download preview PDF.
References
McInerney, T., Terzoppoulos, D.: Deformable models in medical image analysis: A survey. Medical Image Analysis 1(2), 91–108 (1996)
Suri, J.S., Liu, K., Singh, S., Laxinarayan, S.N., Zeng, X., Reden, L.: Shape recovery algorithms using level sets in 2-D/3-D medical imagery: A state-of-the-art review. IEEE Trans. Inform. Technol. Biomed. 6(1), 8–28 (2002)
Li, K., Wu, X., Chen, D.Z., Sonka, M.: Optimal surface segmentation in volumetric images – a graph-theoretic approach. IEEE Trans. Pattern Anal. Machine Intell. 28(1), 119–134 (2006)
Wu, X., Chen, D.Z.: Optimal net surface problems wih applications. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 1029–1042. Springer, Heidelberg (2002)
Boykov, Y.Y., Jolly, M.P.: Interactive graph cuts for optimal and region segmentation of objects in N-D images. In: Proc. of the Eighth IEEE International Conference on Computer Vision (ICCV), vol. 1, pp. 105–112. IEEE Computer Society, Los Alamitos (2001)
Zhao, F., Zhang, H., Wahle, A., Scholz, T.D., Sonka, M.: Automated 4D segmentation of aortic magnetic resonance images. In: British Machine Vision Conference (BMVA). vol. 1, pp. 247–256 (2006)
Haeker, M., Sonka, M., Kardon, R., Shah, V.A., Wu, X., Abràmoff, M.D.: Automated segmentation of intraretinal layers from macular optical coherence tomography images. In: Proceedings of SPIE Medical Imaging 2007: Image Processing. vol. 6512., SPIE (2007)
Huang, D., Swanson, E.A., Lin, C.P., Schuman, J.S., Stinson, W.G., Chang, W., Hee, M.R., Flotte, T., Gregory, K., Puliafito, C.A.: Optical coherence tomography. Science 254(5035), 1178–1181 (1991)
Li, K., Millington, S., Wu, X., Chen, D.Z., Sonka, M.: Simultaneous segmentation of multiple closed surfaces using optimal graph searching. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 406–417. Springer, Heidelberg (2005)
Yu, Y., Acton, S.T.: Speckle reducing anisotropic diffusion. IEEE Trans. Image Processing 11(11), 1260–1270 (2002)
Costa, R.A., Skaf, M., Melo, L.A.S., Calucci, D., Cardillo, J.A., Castro, J.C., Huang, D., Wojtkowski, M.: Retinal assessment using optical coherence tomography. Prog. Retin. Eye. Res. 25(3), 325–353 (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Haeker, M., Wu, X., Abràmoff, M., Kardon, R., Sonka, M. (2007). Incorporation of Regional Information in Optimal 3-D Graph Search with Application for Intraretinal Layer Segmentation of Optical Coherence Tomography Images. In: Karssemeijer, N., Lelieveldt, B. (eds) Information Processing in Medical Imaging. IPMI 2007. Lecture Notes in Computer Science, vol 4584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73273-0_50
Download citation
DOI: https://doi.org/10.1007/978-3-540-73273-0_50
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73272-3
Online ISBN: 978-3-540-73273-0
eBook Packages: Computer ScienceComputer Science (R0)