Intuitionistic Refinement Calculus | SpringerLink
Skip to main content

Intuitionistic Refinement Calculus

  • Conference paper
Typed Lambda Calculi and Applications (TLCA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4583))

Included in the following conference series:

Abstract

Refinement calculi are program logics which formalize the “top-down” methodology of software development promoted by Dijkstra and Wirth in the early days of structured programming. I present here the shallow embedding of a refinement calculus into constructive type theory. This embedding involves monad transformers and the computational reflexion of weakest-preconditions, using a continuation passing style. It should allow to reason about many programs combining non-functional features (state, exceptions, etc) with purely functional ones (higher-order functions, structural recursion, etc).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abrial, J.-R.: The B-Book. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  2. Audebaud, P., Zucca, E.: Deriving Proof Rules from Continuation Semantics. Formal Aspects of Computing 11(4), 426–447 (1999)

    Article  MATH  Google Scholar 

  3. Back, R.-J.: On the correctness of refinement steps in program development. Ph.D. thesis, University of Helsinki (1978)

    Google Scholar 

  4. Back, R.-J., von Wright, J.: Refinement Calculus: A Systematic Introduction. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  5. Behm, P., Benoit, P., et al.: Météor: A Successful Application of B in a Large Project. In: Wing, J.M., Woodcock, J.C.P., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 369–387. Springer, Heidelberg (1999)

    Google Scholar 

  6. Benton, N., Hughes, J., et al.: Monads and Effects. In: Barthe, G., Dybjer, P., Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp. 42–122. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Bodeveix, J.-P., Filali, M., et al.: A Formalization of the B-Method in Coq and PVS. In: Wing, J.M., Woodcock, J.C.P., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, Springer, Heidelberg (1999)

    Google Scholar 

  8. Boulmé, S.: Higher-Order Refinement In Coq (reports and Coq files). (2006), Web page: http://www-lsr.imag.fr/users/Sylvain.Boulme/horefinement/

  9. Boulmé, S.: Higher-Order imperative enumeration of binary trees in Coq. (2007) Online paper: http://www-lsr.imag.fr/Sylvain.Boulme/horefinement/enumBTdesc.pdf

  10. Bunkenburg, A.: Expression Refinement. Ph.D. thesis, Computing Science Department, University of Glasgow (1997)

    Google Scholar 

  11. Coquand, T., Huet, G.: The Calculus of Constructions. Information and Computation 76, 95–120 (1988)

    Article  Google Scholar 

  12. Coq Development Team. The Coq Proof Assistant Reference Manual, version 8.0. Logical Project, INRIA-Rocquencourt (2004)

    Google Scholar 

  13. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of programs. Commun. ACM 18(8), 453–457 (1975)

    Article  MATH  Google Scholar 

  14. Filliâtre, J.-C.: Verification of Non-Functional Programs using Interpretations in Type Theory. Journal of Functional Programming 13(4), 709–745 (2003)

    Article  MATH  Google Scholar 

  15. Gordon, M.J.C.: Mechanizing Programming Logics in Higher-Order Logic. In: Current Trends in Hardware Verification and Automatic Theorem Proving, Springer, Heidelberg (1988)

    Google Scholar 

  16. Honda, K., Berger, M., et al.: An Observationally Complete Program Logic for Imperative Higher-Order Functions. In: IEEE Symp. on LICS’05 (2005)

    Google Scholar 

  17. Liang, S., Hudak, P.: Modular Denotational Semantics for Compiler Construction. In: Nielson, H.R. (ed.) ESOP 1996. LNCS, vol. 1058, pp. 219–234. Springer, Heidelberg (1996)

    Google Scholar 

  18. Moggi, E.: Notions of computation and monads. Information and Computation 93(1), 55–92 (1991)

    Article  MATH  Google Scholar 

  19. Morris, J.M.: A theoretical basis for stepwise refinement and the programming calculus. Science of Computer Programming 9(3), 287–306 (1987)

    Article  MATH  Google Scholar 

  20. Morgan, C.: Programming from Specifications. Prentice-Hall, Englewood Cliffs (1990)

    MATH  Google Scholar 

  21. Nanevski, A., Morrisett, G., et al.: Polymorphism and separation in Hoare Type Theory. In: Nanevski, A., Morrisett, G. (eds.) Proc. of ICFP’06, ACM Press, New York (2006)

    Google Scholar 

  22. Jones, S.L.P., Wadler, P.: Imperative functional programming. In: Proc. of the 20th symposium on POPL, ACM Press, New York (1993)

    Google Scholar 

  23. Paulin-Mohring, C.: Inductive Definitions in the System Coq - Rules and Properties. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  24. Schröder, L., Mossakowski, T.: Monad-independent Hoare logic in HasCasl. In: Pezzé, M. (ed.) ETAPS 2003 and FASE 2003. LNCS, vol. 2621, Springer, Heidelberg (2003)

    Google Scholar 

  25. von Wright, J.: Program refinement by theorem prover. In: 6th Refinement Workshop, Springer, Heidelberg (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Simona Ronchi Della Rocca

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Boulmé, S. (2007). Intuitionistic Refinement Calculus. In: Della Rocca, S.R. (eds) Typed Lambda Calculi and Applications. TLCA 2007. Lecture Notes in Computer Science, vol 4583. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73228-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73228-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73227-3

  • Online ISBN: 978-3-540-73228-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics