Abstract
Refinement calculi are program logics which formalize the “top-down” methodology of software development promoted by Dijkstra and Wirth in the early days of structured programming. I present here the shallow embedding of a refinement calculus into constructive type theory. This embedding involves monad transformers and the computational reflexion of weakest-preconditions, using a continuation passing style. It should allow to reason about many programs combining non-functional features (state, exceptions, etc) with purely functional ones (higher-order functions, structural recursion, etc).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abrial, J.-R.: The B-Book. Cambridge University Press, Cambridge (1996)
Audebaud, P., Zucca, E.: Deriving Proof Rules from Continuation Semantics. Formal Aspects of Computing 11(4), 426–447 (1999)
Back, R.-J.: On the correctness of refinement steps in program development. Ph.D. thesis, University of Helsinki (1978)
Back, R.-J., von Wright, J.: Refinement Calculus: A Systematic Introduction. Springer, Heidelberg (1998)
Behm, P., Benoit, P., et al.: Météor: A Successful Application of B in a Large Project. In: Wing, J.M., Woodcock, J.C.P., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 369–387. Springer, Heidelberg (1999)
Benton, N., Hughes, J., et al.: Monads and Effects. In: Barthe, G., Dybjer, P., Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp. 42–122. Springer, Heidelberg (2002)
Bodeveix, J.-P., Filali, M., et al.: A Formalization of the B-Method in Coq and PVS. In: Wing, J.M., Woodcock, J.C.P., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, Springer, Heidelberg (1999)
Boulmé, S.: Higher-Order Refinement In Coq (reports and Coq files). (2006), Web page: http://www-lsr.imag.fr/users/Sylvain.Boulme/horefinement/
Boulmé, S.: Higher-Order imperative enumeration of binary trees in Coq. (2007) Online paper: http://www-lsr.imag.fr/Sylvain.Boulme/horefinement/enumBTdesc.pdf
Bunkenburg, A.: Expression Refinement. Ph.D. thesis, Computing Science Department, University of Glasgow (1997)
Coquand, T., Huet, G.: The Calculus of Constructions. Information and Computation 76, 95–120 (1988)
Coq Development Team. The Coq Proof Assistant Reference Manual, version 8.0. Logical Project, INRIA-Rocquencourt (2004)
Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of programs. Commun. ACM 18(8), 453–457 (1975)
Filliâtre, J.-C.: Verification of Non-Functional Programs using Interpretations in Type Theory. Journal of Functional Programming 13(4), 709–745 (2003)
Gordon, M.J.C.: Mechanizing Programming Logics in Higher-Order Logic. In: Current Trends in Hardware Verification and Automatic Theorem Proving, Springer, Heidelberg (1988)
Honda, K., Berger, M., et al.: An Observationally Complete Program Logic for Imperative Higher-Order Functions. In: IEEE Symp. on LICS’05 (2005)
Liang, S., Hudak, P.: Modular Denotational Semantics for Compiler Construction. In: Nielson, H.R. (ed.) ESOP 1996. LNCS, vol. 1058, pp. 219–234. Springer, Heidelberg (1996)
Moggi, E.: Notions of computation and monads. Information and Computation 93(1), 55–92 (1991)
Morris, J.M.: A theoretical basis for stepwise refinement and the programming calculus. Science of Computer Programming 9(3), 287–306 (1987)
Morgan, C.: Programming from Specifications. Prentice-Hall, Englewood Cliffs (1990)
Nanevski, A., Morrisett, G., et al.: Polymorphism and separation in Hoare Type Theory. In: Nanevski, A., Morrisett, G. (eds.) Proc. of ICFP’06, ACM Press, New York (2006)
Jones, S.L.P., Wadler, P.: Imperative functional programming. In: Proc. of the 20th symposium on POPL, ACM Press, New York (1993)
Paulin-Mohring, C.: Inductive Definitions in the System Coq - Rules and Properties. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, Springer, Heidelberg (1993)
Schröder, L., Mossakowski, T.: Monad-independent Hoare logic in HasCasl. In: Pezzé, M. (ed.) ETAPS 2003 and FASE 2003. LNCS, vol. 2621, Springer, Heidelberg (2003)
von Wright, J.: Program refinement by theorem prover. In: 6th Refinement Workshop, Springer, Heidelberg (1994)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Boulmé, S. (2007). Intuitionistic Refinement Calculus. In: Della Rocca, S.R. (eds) Typed Lambda Calculi and Applications. TLCA 2007. Lecture Notes in Computer Science, vol 4583. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73228-0_6
Download citation
DOI: https://doi.org/10.1007/978-3-540-73228-0_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73227-3
Online ISBN: 978-3-540-73228-0
eBook Packages: Computer ScienceComputer Science (R0)