Convolution $\bar\lambda\mu$ -Calculus | SpringerLink
Skip to main content

Convolution \(\bar\lambda\mu\)-Calculus

  • Conference paper
Typed Lambda Calculi and Applications (TLCA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4583))

Included in the following conference series:

Abstract

We define an extension of Herbelin’s \(\bar\lambda\mu\)-calculus, introducing a product operation on contexts (in the sense of lists of arguments, or stacks in environment machines), similar to the convolution product of distributions. This is the computational couterpart of some new semantical constructions, extending models of Ehrhard-Regnier’s differential interaction nets, along the lines of Laurent’s polarization of linear logic. We demonstrate this correspondence by providing this calculus with a denotational semantics inside a lambda-model in the category of sets and relations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bucciarelli, A., Ehrhard, T.: An extensional model of the lambda-calculus in the category of sets and relations. Manuscript (2004)

    Google Scholar 

  2. de Carvalho, D.: Execution time of lambda-terms via non uniform semantics and intersection types (2006) Revised version available at http://iml.univ-mrs.fr/c̃arvalho/Pub/computation.pdf

  3. Dougherty, D.J., Ghilezan, S., Lescanne, P.: Intersection and union types in the lambda-bar-mu-mu-tilde-calculus. Electr. Notes Theor. Comput. Sci. 136, 153–172 (2005)

    Article  Google Scholar 

  4. Danos, V., Joinet, J.-B., Schellinx, H.: Sequent calculi for second order logic. In: Girard, J.-Y., Lafont, Y., Regnier, L. (eds.) Advances in Linear Logic, pp. 211–224. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  5. Ehrhard, T.: On Köthe sequence spaces and linear logic. Mathematical Structures in Computer Science 12, 579–623 (2001)

    Article  Google Scholar 

  6. Ehrhard, T.: Finiteness spaces. Mathematical. Structures in Comp. Sci. 15(4), 615–646 (2005)

    Article  MATH  Google Scholar 

  7. Ehrhard, T., Regnier, L.: The differential lambda-calculus. Theoretical Computer Science 309, 1–41 (2003)

    Article  MATH  Google Scholar 

  8. Ehrhard, T., Regnier, L.: Differential interaction nets. Electr. Notes Theor. Comput. Sci. 123, 35–74 (2005)

    Article  Google Scholar 

  9. Herbelin, H.: Séquents qu’on calcule. Phd thesis, Université Paris 7 (1995)

    Google Scholar 

  10. Lafont, Y.: From proof nets to interaction nets. In: Girard, J.-Y., Lafont, Y., Regnier, L. (eds.) Advances in Linear Logic, pp. 225–247. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  11. Laurent, O.: Etude de la polarisation en logique. Thèse de doctorat, Université Aix-Marseille II (March 2002)

    Google Scholar 

  12. Laurent, O.: Polarized proof-nets and λμ-calculus. Theoretical Computer Science 290(1), 161–188 (2003)

    Article  MATH  Google Scholar 

  13. Laurent, O., Regnier, L.: About translations of classical logic into polarized linear logic. In: Proceedings of the 18th annual IEEE symposium on Logic In Comp. Sci., pp. 11–20. IEEE Computer Society Press, Los Alamitos (2003)

    Chapter  Google Scholar 

  14. Parigot, M.: λμ-calculus: An algorithmic interpretation of classical natural deduction. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 190–201. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  15. Regnier, L.: Lambda-calcul et réseaux. PhD thesis, Université Paris 7 (1992)

    Google Scholar 

  16. Schwartz, L.: Théorie des distributions. Hermann (1966)

    Google Scholar 

  17. Vaux, L.: λ-calculus in an algebraic setting (2006) Research report, available at http://iml.univ-mrs.fr/Ṽaux/articles/alglam.ps.gz

  18. Vaux, L.: The differential λμ-calculus. Theoretical Computer Science (to appear, 2007) doi:10.1016/j.tcs.2007.02.028

    Google Scholar 

  19. Vaux, L.: Polarized proof nets and differential structures. Unpublished manuscript (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Simona Ronchi Della Rocca

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Vaux, L. (2007). Convolution \(\bar\lambda\mu\)-Calculus. In: Della Rocca, S.R. (eds) Typed Lambda Calculi and Applications. TLCA 2007. Lecture Notes in Computer Science, vol 4583. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73228-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73228-0_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73227-3

  • Online ISBN: 978-3-540-73228-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics