Towards Optimal Toom-Cook Multiplication for Univariate and Multivariate Polynomials in Characteristic 2 and 0 | SpringerLink
Skip to main content

Towards Optimal Toom-Cook Multiplication for Univariate and Multivariate Polynomials in Characteristic 2 and 0

  • Conference paper
Arithmetic of Finite Fields (WAIFI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4547))

Included in the following conference series:

Abstract

Toom-Cook strategy is a well-known method for building algorithms to efficiently multiply dense univariate polynomials. Efficiency of the algorithm depends on the choice of interpolation points and on the exact sequence of operations for evaluation and interpolation. If carefully tuned, it gives the fastest algorithm for a wide range of inputs.

This work smoothly extends the Toom strategy to polynomial rings, with a focus on . Moreover a method is proposed to find the faster Toom multiplication algorithm for any given splitting order. New results found with it, for polynomials in characteristic 2, are presented.

A new extension for multivariate polynomials is also introduced; through a new definition of density leading Toom strategy to be efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bodrato, M.: Notes on Low Degree Toom-Cook Multiplication with Small Characteristic, Techniocal Report, Centro V.Volterra, Università di Roma Tor Vergata (2007)

    Google Scholar 

  • Bodrato, M., Zanoni, A.: Integer and Polynomial Multiplication: Towards Optimal Toom-Cook Matrices. Proceedings of the ISSAC 2007 Conference. ACM press, New York (2007), http://bodrato.it/papers/#ISSAC2007

    Google Scholar 

  • Chung, J., Anwar Hasan, M.: Asymmetric squaring formulae, Technical Report. CACR 2006-24, University of Waterloo (2006)

    Google Scholar 

  • Cook, S.A.: On the Minimum Computation Time of Functions, Thesis, Harvard University, pp. 51–77 (1966)

    Google Scholar 

  • The GNU Multi-Precision Library (GMP), http://gmplib.org/

  • The GP-Pari Computer Algebra System, http://pari.math.u-bordeaux.fr/

  • Hart, P.E., Nilsson, N.J., Raphael, B.: A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics SSC4, pp. 100–107 (1968)

    Google Scholar 

  • Jebelean, T.: An algorithm for exact division. Journal of Symbolic Computation 15, 169–180 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  • Karatsuba, A., Ofman, Y.: Multiplication of multidigit numbers on automata, Soviet Physics-Doklady, 7, 595–596 (1963); translation from Dokl. Akad. Nauk SSSR, 145(2), 293–294, (1962)

    Google Scholar 

  • Knuth, D.E.: The Art of Computer Programming (Chapter 4, Section 3.3), vol. 2, pp. 278–301. Addison-Wesley, Reading, MA (1981)

    MATH  Google Scholar 

  • Kronecker, L.: Grundzüge einer arithmetischen Theorie der algebraischen Grössen. Journal Für die Reine und Angewandte Mathematik, pp. 92–122 (1882)

    Google Scholar 

  • The Number Theory Library (NTL), http://www.shoup.net/ntl/

  • Toom, A.L.: The Complexity of a Scheme of Functional Elements Realizing the Multiplication of Integers. Soviet Mathematics 3, 714–716 (1963)

    Google Scholar 

  • Schönhage, A., Strassen, V.: Schnelle Multiplikation großer Zahlen. Computing 7, 281–292 (1971)

    Article  MATH  Google Scholar 

  • Schönhage, A.: Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2. Acta. Informatica 7, 395–398 (1977)

    Article  MATH  Google Scholar 

  • Weimerskirch, A., Paar, C.: Generalizations of the Karatsuba Algorithm for Efficient Implementations, Cryptology ePrint Archive, Report 224 (2006)

    Google Scholar 

  • Winograd, S.: Arithmetic Complexity of Computations, CBMS-NSF Regional Conference Series in Mathematics, vol. 33 (1980)

    Google Scholar 

  • Zimmermann, P., Quercia, M.: Private communication, October 2006, irred-ntl source code (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Claude Carlet Berk Sunar

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bodrato, M. (2007). Towards Optimal Toom-Cook Multiplication for Univariate and Multivariate Polynomials in Characteristic 2 and 0. In: Carlet, C., Sunar, B. (eds) Arithmetic of Finite Fields. WAIFI 2007. Lecture Notes in Computer Science, vol 4547. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73074-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73074-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73073-6

  • Online ISBN: 978-3-540-73074-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics