Abstract
In this paper, the implementation results of an integrate and fire neuron implemented in a 130 nm process are presented. This publication covers the properties of IAF neurons from calculations on an ideal electrical circuit modeling the soma of an IAF neuron and compares the theoretical results with simulation results from an extracted layout of the implemented neuron.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Matolin, D., Schreiter, J., Getzlaff, S., Schüffny, R.: An Analog VLSI Pulsed Neural Network Implementation for Image Segmentation. In: Proc. of the International Conference on Parallel Computing in Electrical Engineering, pp. 51–55 (2004)
Indiveri, G., Chicca, E., Douglas, R.: A VLSI Array of Low-Power Spiking Neurons and Bistable Synapses With Spike-Timing Dependent Plasticity. IEEE Transactions on Neural Networks 17(1), 211–221 (2004)
Liu, S.-C., Kramer, J., Indiveri, G., Delbrück, T., Douglas, R.: Orientation-selective a VLSI Spiking Neurons. Neural Networks 14, 629–643 (2001)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kaulmann, T., Lütkemeier, S., Rückert, U. (2007). IAF Neuron Implementation for Mixed-Signal PCNN Hardware. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds) Computational and Ambient Intelligence. IWANN 2007. Lecture Notes in Computer Science, vol 4507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73007-1_55
Download citation
DOI: https://doi.org/10.1007/978-3-540-73007-1_55
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73006-4
Online ISBN: 978-3-540-73007-1
eBook Packages: Computer ScienceComputer Science (R0)