Abstract
We consider an extensional version, called qmTT, of the intensional Minimal Type Theory mTT, introduced in a previous paper with G. Sambin, enriched with proof-irrelevance of propositions and effective quotient sets. Then, by using the construction of total setoid à la Bishop we build a model of qmTT over mTT.
The design of an extensional type theory with quotients and its interpretation in mTT is a key technical step in order to build a two level system to serve as a minimal foundation for constructive mathematics as advocated in the mentioned paper about mTT.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barthes, G., Capretta, V., Pons, O.: Setoids in type theory. J. Funct. Programming, Special issue on Logical frameworks and metalanguages 13(2), 261–293 (2003)
Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill Book Co, New York (1967)
Carboni, A.: Some free constructions in realizability and proof theory. J. Pure Appl. Algebra 103, 117–148 (1995)
Carlström, J.: Subsets, quotients and partial functions in Martin-Löf’s type theory. In: Geuvers, H., Wiedijk, F. (eds.) TYPES 2002. LNCS, vol. 2646, Springer, Berlin (2003)
Carlström, J.: EM + Ext- + ACint is equivalent to ACext. Mathematical Logic Quarterly 50(3), 236–240 (2004)
Carboni, A., Celia Magno, R.: The free exact category on a left exact one. Journal of Australian Math. Soc. 33, 295–301 (1982)
Carboni, A., Rosolini, G.: Locally cartesian closed exact completions. J. Pure Appl. Algebra, Category theory and its applications (Montreal, QC 1997) pp. 103–116, (2000)
Carboni, A., Vitale, E.M.: Regular and exact completions. Journal of Pure. and Applied Algebra 125, 79–116 (1998)
de Bruijn, N.G.: Telescopic mapping in typed lambda calculus. Information and Computation 91, 189–204 (1991)
Hofmann, M.: On the interpretation of type theory in locally cartesian closed categories. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 427–441. Springer, Heidelberg (1995)
Hofmann, M.: Extensional Constructs in Intensional Type Theory. In: Distinguished Dissertations, Springer, Heidelberg (1997)
Hyland, J.M.E.: The effective topos. In: The L.E.J. Brouwer Centenary Symposium (Noordwijkerhout, 1981) Stud. Logic Foundations Math. Stud. Logic Foundations Math, vol. 110, pp. 165–216. North-Holland, Amsterdam-New York (1982)
Jacobs, B.: Categorical Logic and Type Theory, Studies in Logic. Studies in Logic, vol. 141. Elsevier, Amsterdam (1999)
Johnstone, P.T.: Sketches of an Elephant: a Topos Theory Compendium. vol. 2., volume 43 of Oxford Logic Guides. The Clarendon Press, Oxford University Press, New York (2002)
Maietti, M.E.: About effective quotients in constructive type theory. In: Naraschewski, W., Altenkirch, T., Reus, B. (eds.) TYPES 1998. LNCS, vol. 1657, pp. 164–178. Springer, Heidelberg (1999)
Maietti, M.E.: Modular correspondence between dependent type theories and categories including pretopoi and topoi. Mathematical Structures in Computer Science 15(6), 1089–1149 (2005)
Martin-Löf, P.: Intuitionistic Type Theory, notes by G. Sambin of a series of lectures given in Padua, June 1980. Bibliopolis, Naples (1984)
Martin Löf, P.: On the meanings of the logical constants and the justifications of the logical laws. In: Proceedings of the conference on mathematical logic, volume 2, pp. 203–281. Univ. Siena, Siena, 1985. Reprinted in Nordic J. Philos. Logic, 1(1):11–60 (1996)
Martin-Löf, P.: 100 years of Zermelo’s axiom of choice:what was the problem with it? The Computer Journal 49(3), 10–37 (2006)
Maietti, M.E., Sambin, G.: Toward a minimalist foundation for constructive mathematics. In: Crosilla, L., Schuster, P. (eds.) From Sets and Types to Topology and Analysis: Practicable Foundations for Constructive Mathematics, in Oxford Logic Guides, vol. 48, pp. 91–114. Oxford University Press, Oxford (2005)
Maietti, M.E., Valentini, S.: Can you add powersets to Martin-Löf intuitionistic type theory? Mathematical Logic Quarterly 45, 521–532 (1999)
Nordström, B., Petersson, K., Smith, J.: Programming in Martin Löf’s Type Theory. Clarendon Press, Oxford (1990)
Palmgren, E.: Bishop’s set theory. Slides for lecture at the TYPES summer school (2005)
Sambin, G.: Some points in formal topology. Theoretical Computer Science (2003)
Seely, R.A.G.: Hyperdoctrines, natural deduction and the Beck condition. Zeitschr. f. Math. Logik. und Grundlagen d. Math. 29, 505–542 (1983)
Sambin, G., Valentini, S.: Building up a toolbox for Martin-Löf’s type theory: subset theory. In: Sambin, G., Smith, J. (eds.) Twenty-five years of constructive type theory. Proceedings of a Congress held in Venice, October 1995, pp. 221–244. Oxford U. P, Oxford (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Maietti, M.E. (2007). Quotients over Minimal Type Theory. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds) Computation and Logic in the Real World. CiE 2007. Lecture Notes in Computer Science, vol 4497. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73001-9_54
Download citation
DOI: https://doi.org/10.1007/978-3-540-73001-9_54
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73000-2
Online ISBN: 978-3-540-73001-9
eBook Packages: Computer ScienceComputer Science (R0)