Pseudojump Operators and $\Pi^0_1$ Classes | SpringerLink
Skip to main content

Pseudojump Operators and \(\Pi^0_1\) Classes

  • Conference paper
Computation and Logic in the Real World (CiE 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4497))

Included in the following conference series:

  • 1322 Accesses

Abstract

For a pseudojump operator V X and a \(\Pi^0_1\) class P, we consider properties of the set {V X: X ∈ P}. We show that there always exists X ∈ P with \(V^X \leq_T {\mathbf 0'}\) and that if P is Medvedev complete, then there exists X ∈ P with \( V^X \equiv_T {\mathbf 0'}\). We examine the consequences when V X is Turing incomparable with V Y for X ≠ Y in P and when \(W_e^X = W_e^Y\) for all X,Y ∈ P. Finally, we give a characterization of the jump in terms of \(\Pi^0_1\) classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cenzer, D., Remmel, J.B.: \(\Pi^0_1\) classes in mathematics, In: Ershov, Y., Goncharov, S., Nerode, A., Remmel, J. (eds.) Handbook of Recursive Mathematics, Part Two, Elsevier Studies in Logic. vol. 139 pp. 623-821. (1998)

    Google Scholar 

  2. Coles, R., Downey, R., Jockusch, C., LaForte, G.: Completing pseudojump operators. Ann. Pure and Appl. Logic 136, 297–333 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Friedberg, R.M.: A criterion for completeness of degrees of unsolvability. J. Symbolic Logic 22, 159–160 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  4. Jockusch, C.G.: \(\Pi^0_1\) classes and boolean combinations of recursively enumerable sets. J. Symbolic Logic 39, 95–96 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  5. Jockusch, C.G., Soare, R.: Degrees of members of \(\Pi^0_1\) classes. Pacific J. Math 40, 605–616 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jockusch, C., Soare, R.: \(\Pi^0_1\) classes and degrees of theories. Trans. Amer. Math. Soc 173, 35–56 (1972)

    MATH  Google Scholar 

  7. Jockusch, C., Shore, R.: Pseudojump operators I: the r.e. case. Trans. Amer. Math. Soc 275, 599–609 (1983)

    MathSciNet  MATH  Google Scholar 

  8. Simpson, S.: Mass problems and randomness. Bull. Symbolic Logic 11, 1–27 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Soare, R.: Recursively Enumerable Sets and Degrees. Springer, Heidelberg (1987)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cenzer, D., LaForte, G., Wu, G. (2007). Pseudojump Operators and \(\Pi^0_1\) Classes. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds) Computation and Logic in the Real World. CiE 2007. Lecture Notes in Computer Science, vol 4497. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73001-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73001-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73000-2

  • Online ISBN: 978-3-540-73001-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics