State-Space Modeling of Long-Range Dependent Teletraffic | SpringerLink
Skip to main content

State-Space Modeling of Long-Range Dependent Teletraffic

  • Conference paper
Managing Traffic Performance in Converged Networks (ITC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 4516))

Included in the following conference series:

Abstract

This paper develops a new state-space model for long-range dependent (LRD) teletraffic. A key advantage of the state-space approach is that forecasts can be performed on-line via the Kalman predictor. The new model is a finite-dimensional (i. e., truncated) state-space representation of the FARIMA (fractional autoregressive integrated moving average) process. Furthermore, we investigate, via simulations, the multistep ahead forecasts obtained from the new model and compare them with those achieved by fitting high-order autoregressive (AR) models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Leland, W., Taqqu, M., Willinger, W., Wilson, D.: On the self-similar nature of Ethernet traffic (extended version). IEEE/ACM Transactions on Networking 2(1), 1–15 (1994)

    Article  Google Scholar 

  2. Paxson, V., Floyd, S.: Wide-area traffic: The failure of Poisson modeling. IEEE/ACM Transactions on Networking 3(3), 226–244 (1995)

    Article  Google Scholar 

  3. Hurst, H.E.: Long-term storage capacity of reservoirs. Trans. Am. Soc. Civil Engineers 116, 770–799 (1951)

    Google Scholar 

  4. Petropulu, A.P., Yang, X.: Data traffic modeling - a signal processing perspective. In: Barner, K.E., Arce, G.R. (eds.) Nonlinear Signal and Image Processing - Theory, Methods, and Applications, CRC Press, Boca Raton (2004)

    Google Scholar 

  5. Erramilli, A., Narayan, O., Willinger, W.: Experimental queueing analysis with long-range dependent traffic. IEEE/ACM Transactions on Networking 4, 209–223 (1996)

    Article  Google Scholar 

  6. Qiu, J., Knightly, E.W.: Measurement-based admission control with aggregate traffic envelopes. IEEE/ACM Transactions on Networking 9(2) (2001)

    Google Scholar 

  7. Shu, Y., Jin, Z., Zhang, L., Wang, L., Yang, O.W.W.: Traffic prediction using FARIMA models. In: International Conference on Communications (icc’99) vol 2, pp. 891–895 (1999)

    Google Scholar 

  8. Shu, Y., Jin, Z., Zhang, L., Wang, L., Yang, O.W.W.: Prediction-based admission control using FARIMA models. In: International Conference on Communications 2000 (icc’00) vol.2, pp. 1325–1329 (2000)

    Google Scholar 

  9. Ilow, J.: Forecasting network traffic using farima models with heavy tailed innovations. In: International Conference on Acoustic, Speech and Signal Processing 2000 (icassp’00). vol.6, pp. 3814–3817 (2000)

    Google Scholar 

  10. Corradi, M., Garroppo, R.G., Giordano, S., Pagano, M.: Analysis of FARIMA processes in the modeling of broadband traffic. In: International Conference on Communications 2000 (icc’01). vol.3, pp. 964–968 (2001)

    Google Scholar 

  11. Sadek, N., Khotanzad, A., Chen, T.: ATM dynamic bandwidth allocation using F-ARIMA prediction model. In: 12th International Conference on Computer Communications and Networks (iccn) 2003, pp. 359–363 (2003)

    Google Scholar 

  12. Granger, C.W.J., Joyeux, R.: An introduction to long-memory time series models and fractional differencing. Journal of Time. Series Analysis 1, 15–29 (1980)

    MATH  Google Scholar 

  13. Hosking, J.R.M.: Fractional differencing. Biometrika 68, 165–176 (1981)

    Article  MATH  Google Scholar 

  14. Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and Control, 3rd edn. Prentice-Hall, Englewood Cliffs (1994)

    MATH  Google Scholar 

  15. Mandelbrot, B.B., Ness, J.V.: Fractional brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437 (1968)

    Article  MATH  Google Scholar 

  16. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME, J. Basic Eng. 82, 35–45 (1960)

    Google Scholar 

  17. Tsay, R.S.: Analysis of Financial Time Series, 2nd edn. John Wiley and Sons, Hoboken (2005)

    MATH  Google Scholar 

  18. Durbin, J., Koopman, S.J.: Time Series Analysis by State Space Models. Oxford University Press, Oxford (2001)

    Google Scholar 

  19. Bhansali, R.J., Kokoszka, P.S.: Prediction of long-memory time series. In: Doukan, P., Oppenheim, G., Taqqu, M.S. (eds.) Theory and Applications of Long Range Dependence, Birkhäuser, Boston (2003)

    Google Scholar 

  20. Kolarov, A., Atai, A., Hui, J.: Application of Kalman filter in high-speed networks. In: Global Telecommunications Conference (globecom’94), vol.1, pp. 624–628 (1994)

    Google Scholar 

  21. Lim, A.O., Ab-Hamid, K.: Kalman predictor method for congestion avoidance in ATM networks. In: tencon 2000, pp. I346–I351( 2000)

    Google Scholar 

  22. Zhinjun, F., Yuanhua, Z., Daowen, Z.: Kalman optimized model for MPEG-4 VBR sources. IEEE Transactions on Consumer Electronics 50(2), 688–690 (2004)

    Article  Google Scholar 

  23. Beran, J.: Statistics for Long-Memory Processes. Chapman & Hall, Sydney (1994)

    MATH  Google Scholar 

  24. Percival, D.B., Walden, A.T.: Wavelet Methods for Time Series Analysis. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  25. Harvey, A.C.: Time Series Models, 2nd edn. MIT Press, Cambridge (1993)

    MATH  Google Scholar 

  26. Stark, H., Woods, J.W.: Probability and Random Processes with Applications to Signal Processing, 3rd edn. Prentice Hall, Upper Saddle River (2002)

    Google Scholar 

  27. Zivot, E., Wang, J.: Modeling Financial Time Series with S-PLUS. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  28. de Mello, F.L., de Lima, A.B., Lipas, M., de Almeida Amazonas, J.R.: Generation of Gaussian self-similar series via wavelets for use in traffic simulations. IEEE Latin America Transactions (in press)

    Google Scholar 

  29. Percival, D.B., Walden, A.T.: Spectral Analysis for Physical Applications. Cambridge, New York (1993)

    Google Scholar 

  30. Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: Petrov, B.N., Csaki, F. (eds.) 2nd International Symposium on Information Theory, Akademia Kiado, Budapest, pp. 267–281 (1973)

    Google Scholar 

  31. Morettin, P.A., Toloi, C.M.C.: Análise de Séries Temporais. Edgard Blucher ltda., São Paulo (2004)

    Google Scholar 

  32. Beran, J., Bhansali, R.J., Ocker, D.: On unified model selection for stationary and nonstationary short- and long-memory autogressive processes. Biometrika 85, 921–934 (1998)

    Article  MATH  Google Scholar 

  33. Beran, J.: Semifar models, a semiparametric framework for modelling trends, long-range dependence and nonstationarity. Technical report, University of Konstanz, Germany (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lorne Mason Tadeusz Drwiega James Yan

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Lima, A.B., de A. Amazonas, J.R. (2007). State-Space Modeling of Long-Range Dependent Teletraffic. In: Mason, L., Drwiega, T., Yan, J. (eds) Managing Traffic Performance in Converged Networks. ITC 2007. Lecture Notes in Computer Science, vol 4516. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72990-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72990-7_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72989-1

  • Online ISBN: 978-3-540-72990-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics