Abstract
This paper develops a new state-space model for long-range dependent (LRD) teletraffic. A key advantage of the state-space approach is that forecasts can be performed on-line via the Kalman predictor. The new model is a finite-dimensional (i. e., truncated) state-space representation of the FARIMA (fractional autoregressive integrated moving average) process. Furthermore, we investigate, via simulations, the multistep ahead forecasts obtained from the new model and compare them with those achieved by fitting high-order autoregressive (AR) models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Leland, W., Taqqu, M., Willinger, W., Wilson, D.: On the self-similar nature of Ethernet traffic (extended version). IEEE/ACM Transactions on Networking 2(1), 1–15 (1994)
Paxson, V., Floyd, S.: Wide-area traffic: The failure of Poisson modeling. IEEE/ACM Transactions on Networking 3(3), 226–244 (1995)
Hurst, H.E.: Long-term storage capacity of reservoirs. Trans. Am. Soc. Civil Engineers 116, 770–799 (1951)
Petropulu, A.P., Yang, X.: Data traffic modeling - a signal processing perspective. In: Barner, K.E., Arce, G.R. (eds.) Nonlinear Signal and Image Processing - Theory, Methods, and Applications, CRC Press, Boca Raton (2004)
Erramilli, A., Narayan, O., Willinger, W.: Experimental queueing analysis with long-range dependent traffic. IEEE/ACM Transactions on Networking 4, 209–223 (1996)
Qiu, J., Knightly, E.W.: Measurement-based admission control with aggregate traffic envelopes. IEEE/ACM Transactions on Networking 9(2) (2001)
Shu, Y., Jin, Z., Zhang, L., Wang, L., Yang, O.W.W.: Traffic prediction using FARIMA models. In: International Conference on Communications (icc’99) vol 2, pp. 891–895 (1999)
Shu, Y., Jin, Z., Zhang, L., Wang, L., Yang, O.W.W.: Prediction-based admission control using FARIMA models. In: International Conference on Communications 2000 (icc’00) vol.2, pp. 1325–1329 (2000)
Ilow, J.: Forecasting network traffic using farima models with heavy tailed innovations. In: International Conference on Acoustic, Speech and Signal Processing 2000 (icassp’00). vol.6, pp. 3814–3817 (2000)
Corradi, M., Garroppo, R.G., Giordano, S., Pagano, M.: Analysis of FARIMA processes in the modeling of broadband traffic. In: International Conference on Communications 2000 (icc’01). vol.3, pp. 964–968 (2001)
Sadek, N., Khotanzad, A., Chen, T.: ATM dynamic bandwidth allocation using F-ARIMA prediction model. In: 12th International Conference on Computer Communications and Networks (iccn) 2003, pp. 359–363 (2003)
Granger, C.W.J., Joyeux, R.: An introduction to long-memory time series models and fractional differencing. Journal of Time. Series Analysis 1, 15–29 (1980)
Hosking, J.R.M.: Fractional differencing. Biometrika 68, 165–176 (1981)
Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and Control, 3rd edn. Prentice-Hall, Englewood Cliffs (1994)
Mandelbrot, B.B., Ness, J.V.: Fractional brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437 (1968)
Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME, J. Basic Eng. 82, 35–45 (1960)
Tsay, R.S.: Analysis of Financial Time Series, 2nd edn. John Wiley and Sons, Hoboken (2005)
Durbin, J., Koopman, S.J.: Time Series Analysis by State Space Models. Oxford University Press, Oxford (2001)
Bhansali, R.J., Kokoszka, P.S.: Prediction of long-memory time series. In: Doukan, P., Oppenheim, G., Taqqu, M.S. (eds.) Theory and Applications of Long Range Dependence, Birkhäuser, Boston (2003)
Kolarov, A., Atai, A., Hui, J.: Application of Kalman filter in high-speed networks. In: Global Telecommunications Conference (globecom’94), vol.1, pp. 624–628 (1994)
Lim, A.O., Ab-Hamid, K.: Kalman predictor method for congestion avoidance in ATM networks. In: tencon 2000, pp. I346–I351( 2000)
Zhinjun, F., Yuanhua, Z., Daowen, Z.: Kalman optimized model for MPEG-4 VBR sources. IEEE Transactions on Consumer Electronics 50(2), 688–690 (2004)
Beran, J.: Statistics for Long-Memory Processes. Chapman & Hall, Sydney (1994)
Percival, D.B., Walden, A.T.: Wavelet Methods for Time Series Analysis. Cambridge University Press, Cambridge (2000)
Harvey, A.C.: Time Series Models, 2nd edn. MIT Press, Cambridge (1993)
Stark, H., Woods, J.W.: Probability and Random Processes with Applications to Signal Processing, 3rd edn. Prentice Hall, Upper Saddle River (2002)
Zivot, E., Wang, J.: Modeling Financial Time Series with S-PLUS. Springer, Heidelberg (2003)
de Mello, F.L., de Lima, A.B., Lipas, M., de Almeida Amazonas, J.R.: Generation of Gaussian self-similar series via wavelets for use in traffic simulations. IEEE Latin America Transactions (in press)
Percival, D.B., Walden, A.T.: Spectral Analysis for Physical Applications. Cambridge, New York (1993)
Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: Petrov, B.N., Csaki, F. (eds.) 2nd International Symposium on Information Theory, Akademia Kiado, Budapest, pp. 267–281 (1973)
Morettin, P.A., Toloi, C.M.C.: Análise de Séries Temporais. Edgard Blucher ltda., São Paulo (2004)
Beran, J., Bhansali, R.J., Ocker, D.: On unified model selection for stationary and nonstationary short- and long-memory autogressive processes. Biometrika 85, 921–934 (1998)
Beran, J.: Semifar models, a semiparametric framework for modelling trends, long-range dependence and nonstationarity. Technical report, University of Konstanz, Germany (1999)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
de Lima, A.B., de A. Amazonas, J.R. (2007). State-Space Modeling of Long-Range Dependent Teletraffic. In: Mason, L., Drwiega, T., Yan, J. (eds) Managing Traffic Performance in Converged Networks. ITC 2007. Lecture Notes in Computer Science, vol 4516. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72990-7_26
Download citation
DOI: https://doi.org/10.1007/978-3-540-72990-7_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72989-1
Online ISBN: 978-3-540-72990-7
eBook Packages: Computer ScienceComputer Science (R0)