Summary
The work presented in this chapter is concerned with the identification and modelling of nonlinear dynamical systems using multiobjective evolutionary algorithms (MOEAs). This problem involves the processes of structure selection, parameter estimation, model performance and model validation and defines a complex solution space. Evolutionary algorithms (EAs), in particular genetic programming (GP), are found to provide a way of evolving models to solve this identification and modelling problem, and their use is extended to encompass multiobjective functions. Multiobjective genetic programming (MOGP) is then applied to multiple conflicting objectives in order to yield a set of simple and valid human-understandable models which can reproduce the behaviour of a given unknown system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Araujo, L. (2006) Multiobjective Genetic Programming for Natural Language Parsing and Tagging, Parallel Problem Solving From Nature PPSN IX, LNCS 4193, Springer-Verlag, pp. 433–442.
Berstein, Y., X. Li, V.Ciesielski and A.Song (2004) Multiobjective Parsimony Enforcement for Superior Generalisation Performance, Congress on Evolutionary Computation CEC 2004, IEEE Press, pp. 83–89.
Billings, S.A. and W.S.F.Voon (1983) Structure Detection and Model Validity Tests in the Identification of Nonlinear Systems. IEE Proceedings Pt. D, 130(4), pp. 193–199.
Billings, S.A. and W.S.F.Voon (1984) Least Square Parameter Estimation Algorithm for Nonlinear Systems. Int. J. Systems Sci., 15(6), pp. 601–615.
Bleuler, S., M.Brack, L.Thiele and E.Zitzler (2001) Multiobjective Genetic Programming: Reducing Bloat Using SPEA2, Congress on Evolutionary Computation CEC 2001, IEEE Press, pp. 536–543.
Chen, S. and S.A.Billings (1989) Representation of Nonlinear Systems: the NARMAX Model. Int. J. Control, 49(3), pp. 1013–1032.
Cordon, O., E.Herrera-Viedma and M.Luque (2006) Evolutionary Learning of Boolean Queries by Multiobjective Genetic Programming, Parallel Problem Solving From Nature PPSN VII, LNCS 2439, Springer-Verlag, pp. 710–719.
Deb, K., A.Pratap, S.Agarwal, and T.Meyarivan (2002) A Fast and Elitist Multiobjective Genetic Algorithm: NSGA–II, IEEE Transactions on Evolutionary Computation, 6(2), pp. 182–197.
De Jong, E.D. and J.B.Pollack (2003) Multiobjective Methods for Tree Size Control, Genetic Programming and Evolvable Machines (4), Kluwer Academic Publisher, pp. 211–233.
Fogel, L.J., A.J.Owens and M.J.Walsh. (1966) Artificial Intelligence Through Simulated Evolution. Wiley Publishing.
Fonseca, C.M. and P.J.Fleming. (1993) An Overview of Evolutionary Algorithms in Multiobjective Optimization, Evolutionary Computation, 3(1), pp. 1–16.
Fonseca, C.M. and P.J.Fleming (1995) Multiobjective Optimization and Multiple Constraint Handling with Evolutionary Algorithms I: A Unified Formulation. Research Report 564, Dept. of Automatic Control and Systems Engineering. University of Sheffield, U.K.
Galvan-Lopez, E. and K.Rodriguez Vazquez (2006) The Importance of Neutral Mutations in GP, Parallel Problem Solving from Nature IX, volume 4193 of LNCS (Runnarson et al., eds.), Pringer-Verlag, pp. 870–879.
Haber, R. and H.Unbenhauen (1990) Structure Identification of Nonlinear Dynamic Systems: A Survey of Input-Output Approaches. Automatica, 26(4), pp. 651–677.
Holland, J.H. (1975) Adaptation in Natural and Artificial Systems. The University of Michigan Press.
Iba, H., H.de Garis and T.Sato. (1994) Genetic Programming Using a Minimum Description Length. Advances in Genetic Programming (Kinnear, Ed.), MIT Press, pp. 265–284.
Kim, D. (2004) Structural Risk Minimization on Decision Trees Using an Evolutionary Multiobjective Optimization, European Conference on Genetic Programming EuroGP 2004, LNCS 3003, Springer-Verlag, pp. 338–348.
Kimura, M. (1968) Evolutionary Rate at the Molecular Level, Nature (217), pp. 624–626.
Koza, J.R. (1992) Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press.
Langdon, W.B. (1996) Data Structure and Genetic Programming, Advances in Genetic Programming Vol. 2, (Angeline and Kinnear, eds,), Chapter 20, MIT Press, pp. 395–414.
Leontaris, I.J. and S.A. Billings (1985) Input-Output Parametric Models for Nonlinear Systems. Int. J. Control 41(2), 311–341.
Rechenberg, I. (1965) Cybernetic Solution Path of an Experimental Problem. Ministry of Aviation, Royal Aircraft Establishment.
Rodríguez-Vázquez, K., C.M. Fonseca and P.J. Fleming (1997) An Evolutionary Approach to Nonlinear System Identification, to appear in 11th IFAC Symposium on System Identification.
Rodríguez-Vázquez, K., C.M.Fonseca and P.J.Fleming (1997) Multiobjective Genetic Programming: A Nonlinear System Identification Application. Late Breaking Paper at the 2nd Int. Genetic Programming 97 Conference, Stanford University, pp. 207–212.
Siegel, E.V. and A.D.Chaffe (1996) Genetically Optimizing the Speed of Programs Evolved to Play Tetris, Advances in Genetic Programming Vol. 2 (Angeline and Kinnear, eds.), Chapter 14, MIT Press, pp. 279–298.
Zhang, B.T. and H.Mühlenbein (1996) Adaptive Fitness Functions for Dynamic Growing/Pruning. Advances in Genetic Programming Vol. 2 (Angeline and Kinnear, eds.), Chapter 12,, MIT Press, pp. 241–256.
Zhang, Y. and P.I.Rockett (2005) Evolving Optimal Feature Extraction Using Multiobjective Genetic Programming: A Methodology and Preliminary Study on Edge Detection, Genetic and Evolutionary Computation Conference GECCO 2005, ACM Press, pp. 795–802.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Rodríguez-Vázquez, K., Fleming, P.J. (2008). Multiobjective GP for Human-Understandable Models: A Practical Application. In: Knowles, J., Corne, D., Deb, K. (eds) Multiobjective Problem Solving from Nature. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72964-8_10
Download citation
DOI: https://doi.org/10.1007/978-3-540-72964-8_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72963-1
Online ISBN: 978-3-540-72964-8
eBook Packages: Computer ScienceComputer Science (R0)