Local Edge Colouring of Yao-Like Subgraphs of Unit Disk Graphs | SpringerLink
Skip to main content

Local Edge Colouring of Yao-Like Subgraphs of Unit Disk Graphs

  • Conference paper
Structural Information and Communication Complexity (SIROCCO 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4474))

Abstract

The focus of the present paper is on providing a local deterministic algorithm for colouring the edges of Yao-like subgraphs of Unit Disc Graphs. These are geometric graphs such that for some positive integers l,k the following property holds at each node v: if we partition the unit circle centered at v into 2k equally sized wedges then each wedge can contain at most l points different from v. We assume that the nodes are location aware, i.e. they know their Cartesian coordinates in the plane. The algorithm presented is local in the sense that each node can receive information emanating only from nodes which are at most a constant (depending on k and l, but not on the size of the graph) number of hops away from it, and hence the algorithm terminates in a constant number of steps. The number of colours used is 2kl + 1 and this is optimal for local algorithms (since the maximal degree is 2kl and a colouring with 2kl colours can only be constructed by a global algorithm), thus showing that in this class of graphs the price for locality is only one additional colour.

Keywords and Phrases: Edge Colouring, Geometric Graphs, Unit Disk Graphs, Local Algorithm, Location Awareness, Wedge, Wireless Network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Barrett, T.C., et al.: Strong edge coloring for channel assignment in wireless radio networks. In: IEEE International Workshop on Foundation and Algorithms for Wireless Networking, IEEE, New York (2006)

    Google Scholar 

  • Kranakis, E., et al.: Half-Space Proximal: A New Local Test for Extracting a Bounded Dilation Spanner of a Unit Disk Graph. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 235–245. Springer, Heidelberg (2006a)

    Google Scholar 

  • Chavez, E., et al.: Local construction of planar spanners in unit disk graphs with irregular transmission ranges. In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 286–297. Springer, Heidelberg (2005b)

    Google Scholar 

  • Erdös, P.: On circuits and subgraphs of chromatic graphs. Mathematika 9, 170–175 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  • Gandham, S., Dawande, M., Prakash, R.: Link scheduling in sensor networks: distributed edge coloring revisited. In: INFOCOM, pp. 2492–2501. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  • Holyer, I.: The NP-completeness of edge-coloring. SIAM Journal on Computing 10(4), 718–720 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Kodialam, M.S., Nandagopal, T.: Characterizing achievable rates in multi-hop wireless mesh networks with orthogonal channels. IEEE/ACM Trans. Netw. 13(4), 868–880 (2005)

    Article  Google Scholar 

  • Kumar, V.S.A., et al.: End-to-end packet-scheduling in wireless ad-hoc networks. In: Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, New Orleans, Louisiana, USA, January 11-14, 2004, pp. 1021–1030. SIAM, Philadelphia (2004)

    Google Scholar 

  • Li, X.-Y., et al.: Localized delaunay triangulation with application in ad hoc wireless networks. IEEE Trans. Parallel Distrib. Syst. 14(10), 1035–1047 (2003)

    Article  Google Scholar 

  • Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Computing 21(1), 193–201 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Marathe, M.V., et al.: Simple heuristics for unit disk graphs. Networks 25(1), 59–68 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Matsui, T.: Approximation algorithms for maximum independent set problems and fractional coloring problems on unit disk graphs. In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG 1998. LNCS, vol. 1763, pp. 194–200. Springer, Heidelberg (2000)

    Google Scholar 

  • Naor, M., Stockmeyer, L.: What can be computed locally? SICOMP: SIAM Journal on Computing, vol. 24 (1995)

    Google Scholar 

  • Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM, Philadelphia (2000)

    MATH  Google Scholar 

  • Ramanathan, S.: A unified framework and algorithm for channel assignment in wireless networks. Wireless Networks 5(2), 81–94 (1999)

    Article  Google Scholar 

  • Vizing, V.G.: On the estimate of the chromatic class of a p-graph. Diskret. Analiz. 3, 25–30 (1964)

    MathSciNet  Google Scholar 

  • Wang, Y., Li, X.-Y.: Localized construction of bounded degree and planar spanner for wireless ad hoc networks. In: DialM: Proceedings of the Discrete Algorithms and Methods for Mobile Computing & Communications (2003)

    Google Scholar 

  • Yao, A.: On constructing minimum spanning trees in k-dimensional spaces and related problems. SIAM Journal on Computing 11(4), 721–736 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Giuseppe Prencipe Shmuel Zaks

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Czyzowicz, J., Dobrev, S., Kranakis, E., Opatrny, J., Urrutia, J. (2007). Local Edge Colouring of Yao-Like Subgraphs of Unit Disk Graphs. In: Prencipe, G., Zaks, S. (eds) Structural Information and Communication Complexity. SIROCCO 2007. Lecture Notes in Computer Science, vol 4474. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72951-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72951-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72918-1

  • Online ISBN: 978-3-540-72951-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics