Image Threshold Using A-IFSs Based on Bounded Histograms | SpringerLink
Skip to main content

Image Threshold Using A-IFSs Based on Bounded Histograms

  • Conference paper
Foundations of Fuzzy Logic and Soft Computing (IFSA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4529))

Included in the following conference series:

Abstract

Atanassov’s intuitionistic fuzzy sets (A-IFSs) have been used recently to determine the optimal threshold value for gray-level image segmentation [1]. Atanassov’s intuitionistic fuzzy index values are used for representing the unknowledge/ignorance of an expert on determining whether a pixel of the image belongs to the background or the object of the image. This optimal global threshold of the image is computed automatically, regardless of the actual image analysis process.

Although global optimal thresholding techniques give good results under experimental conditions, when dealing with real images having several objects and the segmentation purpose is to point out some application-specific information, one should use heuristic techniques in order to obtain better thresholding results.

This paper introduces an evolution of the above mentioned technique intended for use with such images. The proposed approach takes into account the image and segmentation specificities by using a two-step procedure, with a restricted set of the image gray-levels.

Preliminary experimental results and comparison with other methods are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bustince, H., Pagola, M., Melo-Pinto, P., Barrenechea, E., Couto, P.: Image threshold computation by modelizing knowledge/unknowledge by means of A-IFSs. In: Fuzzy Sets and Their Extensions: Representation, Aggregation and Models. Studies in Fuzziness and Soft Computing, vol. 220, pp. 225–240. Springer, Heidelberg (2008)

    Google Scholar 

  2. Jawahar, C.V., Biswas, P.K., Ray, A.K.: Analysis of fuzzy thresholding schemes. Pattern Recognition 33, 1339–1349 (2000)

    Article  Google Scholar 

  3. Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging 13(1), 146–165 (2004)

    Article  Google Scholar 

  4. Fu, K., Mui, J.: A survey on image segmentation. Pattern Recognition 13, 3–16 (1981)

    Article  MathSciNet  Google Scholar 

  5. Haralick, R., Shapiro, L.: Image segmentation techniques. Computer Vision, Graphics and Image Processing 29, 100–132 (1985)

    Article  Google Scholar 

  6. Pal, N., Pal, S.: A review on image segmentation techniques. Pattern Recognition 26, 1277–1294 (1993)

    Article  Google Scholar 

  7. Barrenechea, E.: Image Thresholding with Interval-valued Fuzzy Sets. Edge Detection. Contrast. PHD Thesis - Universidad Pública de Navarra (2005)

    Google Scholar 

  8. Burillo, P., Bustince, H.: Entropy on intuitionistic fuzzy sets and on intervalvalued fuzzy sets. Fuzzy Sets and Systems 78, 81–103 (1996)

    Article  Google Scholar 

  9. Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20, 87–96 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Atanassov, K.: Intuitionistic fuzzy sets. Theory and applications. Studies in Fuzziness and Soft Computing. Springer, New York (1999)

    MATH  Google Scholar 

  11. Pereira, J., Cabrita, A., Filipe, V., Bulas-Cruz, J., Couto, P., Melo-Pinto, P., Costa, L., Geuna, S., Maurício, A., Varejão, A.: A comparison analysis of hindlimb kinematics during overground and treadmill locomotion in rats. Behavioural Brain Research 172, 212–218 (2006)

    Article  Google Scholar 

  12. Filipe, V., Pereira, J., Costa, L., Maurício, A., Couto, P., Melo-Pinto, P., Varejão, A.: Effect of skin movement on the analysis of hindlimb kinematics during treadmill locomotion in rats. Journal of Neuroscience Methods 153, 55–61 (2006)

    Article  Google Scholar 

  13. Varejão, A., Cabrita, A., Patrício, J., Bulas-Cruz, J., Gabriel, R., Melo-Pinto, P., Couto, P., Meek, M.: Functional assesment of peripheal nerve recovery in the rat: Gait Kinematics. Microsurgery 21, 383–388 (2001)

    Article  Google Scholar 

  14. Otsu, N.: A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. on Systems, Man, and Cybern. 9, 62–66 (1979)

    Article  Google Scholar 

  15. Kittler, J., Illingworth, J.: Minimum Error Thresholding. Pattern Recognition 19 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Patricia Melin Oscar Castillo Luis T. Aguilar Janusz Kacprzyk Witold Pedrycz

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Couto, P., Bustince, H., Filipe, V., Barrenechea, E., Pagola, M., Melo-Pinto, P. (2007). Image Threshold Using A-IFSs Based on Bounded Histograms. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds) Foundations of Fuzzy Logic and Soft Computing. IFSA 2007. Lecture Notes in Computer Science(), vol 4529. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72950-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72950-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72917-4

  • Online ISBN: 978-3-540-72950-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics