Risk Classification of Mammograms Using Anatomical Linear Structure and Density Information | SpringerLink
Skip to main content

Risk Classification of Mammograms Using Anatomical Linear Structure and Density Information

  • Conference paper
Pattern Recognition and Image Analysis (IbPRIA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4478))

Included in the following conference series:

Abstract

Mammographic risk assessment is concerned with the probability of a woman developing breast cancer. Recently, it has been suggested that the density of linear structures is related to risk. For 321 images from the MIAS database, the images were segmented in to dense and non-dense tissue using a method described by Sivaramakrishna, et al. In addition, a measure of line strength was obtained for each pixel using the Line Operator method. The above-threshold linearity was calculated in dense and non-dense tissue for each image and the images were then classified by BIRADS class using linear discriminant analysis. The results show a marked improvement when both density and linear structure information is used in classification over density information alone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. van Gils, C.H., Otten, J.D., Hendriks, J.H., Holland, R., Straatman, H., Verbeek, A.L.: High mammographic breast density and its implications for the early detection of breast cancer. Journal of Medical Screening 6, 200–204 (1999)

    Google Scholar 

  2. Wolfe, J.N.: Risk for breast cancer development determined by mammographic parenchymal pattern. Cancer 37(5), 2486–2492 (1976)

    Article  Google Scholar 

  3. Kolb, T.M., Lichy, J., Newhouse, J.H.: Comparison of the performance of screening mammography, physical examination, and breast us and evaluation of factors that influence them: An analysis of 27,825 patient evaluations. Radiology 225(1), 165–175 (2002)

    Article  Google Scholar 

  4. Tabár, L., Dean, P.B.: Mammographic parenchymal patterns. risk indicator for breast cancer? Journal of the American Medical Association 247(2), 185–189 (1982)

    Article  Google Scholar 

  5. Gram, I.T., Funkhouser, E., Tabár, L.: The Tabár classification of mammographic parenchymal patterns. European Journal of Radiology 24(2), 131–136 (1997)

    Article  Google Scholar 

  6. Tabár, L., Tot, T., Dean, P.B.: Breast Cancer - The Art and Science of Early Detection with Mammography. Georg Thieme Verlag, Stuttgart (2005)

    Google Scholar 

  7. Suckling, J., Parker, J., Dance, D., Astley, S., Hutt, I., Boggis, C., Ricketts, I., Stamatakis, E., Cerneaz, N., Kok, S., Taylor, P., Betal, D., Savage, J.: The mammographic images analysis society digital mammogram database. In: Exerpta Medica. International Congress Series, vol. 1069, pp. 375–378 (1994)

    Google Scholar 

  8. American College of Radiology: Illustrated Breast Imaging Reporting and Data System. 3rd edn. American College of Radiology (1998)

    Google Scholar 

  9. Sivaramakrishna, R., Obuchowski, N.A., Chilcote, W.A., Powell, K.A.: Automatic segmentation of mammographic density. Academic Radiology 8(3), 250–256 (1998)

    Article  Google Scholar 

  10. Kittler, J., Illingworth, J.: Minimum error thresholding. Pattern Recognition 19(1), 41–47 (1986)

    Article  Google Scholar 

  11. Dixon, R.N., Taylor, C.J.: Automated asbestos fibre counting. In: Institute of Physics Conference Series, vol. 44, pp. 178–185 (1979)

    Google Scholar 

  12. Zwiggelaar, R., Astley, S.M., Boggis, C.R.M., Taylor, C.J.: Linear structures in mammographic images: Detection and classification. IEEE Transactions on Medical Imaging 23(9), 1077–1086 (2004)

    Article  Google Scholar 

  13. Hadley, E.M., Denton, E.R.E., Zwiggelaar, R.: Mammographic risk assessment based on anatomical linear structures. In: Astley, S.M., Brady, M., Rose, C., Zwiggelaar, R. (eds.) IWDM 2006. LNCS, vol. 4046, pp. 626–633. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20, 27–46 (1960)

    Article  Google Scholar 

  15. Landis, J., Koch, G.: The measurement of observer agreement for categorical data. Biometrics 33(3), 159–174 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  16. Oliver, A., Freixenet, J., Martí, R., Zwiggelaar, R.: A comparison of breast tissue classification techniques. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 872–879. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Karssemeijer, N.: Automated classification of mammographic parenchymal pattern. Physics in Medicine and Biology 28, 365–378 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joan Martí José Miguel Benedí Ana Maria Mendonça Joan Serrat

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Hadley, E.M., Denton, E.R.E., Pont, J., Pérez, E., Zwiggelaar, R. (2007). Risk Classification of Mammograms Using Anatomical Linear Structure and Density Information. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds) Pattern Recognition and Image Analysis. IbPRIA 2007. Lecture Notes in Computer Science, vol 4478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72849-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72849-8_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72848-1

  • Online ISBN: 978-3-540-72849-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics