Summary
Three integral components to build a tutoring system for echocardiography are presented. A mathematical time-varying model for vessel-representations of the human heart, based on cubic B-Splines and wavelets facilitating the extraction of arbitrarily detailed anatomical boundaries. A dedicated ontology framework the model is embedded into enabling efficient (meta-)data management as well as the automatic generation of (e.g. pathologic) heart instances based on standardized cardiac findings. A simulator generating virtual ultrasound images from instances of the heart transformed into isotropic tissue representations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
C. Barry, C. Allot, N. John, P. Mellor, P. Arundel, D. Thomson, and J.Waterton. Three dimensional freehand ultrasound: Image reconstruction and image analysis. Ultrasound in Med. & Biol.
Th. Berlage, Th. Fox, G. Grunst, and K.-J. Quast. Supporting Ultrasound Diagnosis Using An Animated 3D Model of the Heart. In (ICMCS’96), page 34, 1996.
R. Brooks. Simulation and Matching of Ultrasound with MRI. Technical Report 110247534, McGill Centre for Intelligent Mashines, April 2003.
M. Bertram, G. Reis, R.H. van Lengen, and H. Hagen. Non-manifol Mesh Extraction from Time-varying Segmented Volumes used for Modeling a Human Heart. Eurographics/IEEE TVCG Symposium on Visualizatzion, pages 1-10, 2005.
Deutsche Gesellschaft für Kardiologie-, Herz- und Kreislaufforschung. Qualitätsleitlinien in der Echokardiographie. Z Kardiol, 1997.
Deutsche Gesellschaft für Kardiologie-, Herz- und Kreislaufforschung. Eine standardisierte Dokumentationsstruktur zur Befunddokumentation in der chokardiographie. Z Kardiol, 2000.
T Elliot, D Downey, S Tong, C McLean, and A Fenster. Accuracy of prostate volume measurements in vitro using three-dimensional ultrasound. Acad. Radiology, 3:401406, 1996.
H.H. Ehricke. SONOSim3D: A Multimedia System for Sonography Simulation and Education with an Extensible Database. European Journal of Ultrasound, 7:225–300, 1998.
D. H. Salesin E. J. Stollnitz, T. D. DeRose. Wavelets for Computer Graphics Theory and Applications. Morgan Kaufmann Publishers Inc.
A. Fenster, S. Tong, S. Sherebrin, D. Downey, and R. Rankin. Three-dimensional ultrasound imaging. Proc. SPIE, 2432:176184, 1995.
SONOFIT GmbH. SONOFit SG3 ultrasound training system, 2005. http://www.sonofit.com.
H. Hagen, T. Bähr, R.H. van Lengen, and O. Schweikart. Interlinguar in medizinischen Informationssystemen. In Telemedizinführer Deutschland, Hrsg. A. Jäckel, 2001. Deutsches Medizinforum.
J.A. Jensen. Field: A Program for Simulating Ultrasound Systems. In 10th Nordic-Baltic Conference on Biomedical Imaging, 1996.
J.A. Jensen and S.I. Nikolov. Fast Simuation of Ultrasound Images. In IEEE International Ultrasonics Symposium, 2002.
K. Johnes. Modelling the Human Heart. www.uniservices.co.nz/ModellingtheHumanHeart.pdf.
S. Köhn, R.H. van Lengen, G. Reis, M. Bertram, and H. Hagen. VES: Virtual Echocardiographic System. In IASTED VIIP’04, pages 465-471, 2004.
R. Ludwig and W. Lord. A. Finite. Element Formulation for the study of Ultrasonic NDT Systems. IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control, 35:809–820, 1988.
S. McRoy and S. Ali. Uniform Knowledge Representation for Language Processing in the B2 System. Natural Language Engeneering, 3(2):123–145, 1997. Cambridge University Press.
J. Michael, J. L. V. Mejino, and C. Rosse. The role of definitions in biomedical concept representation. In American Medical Informatics Association Fall Symposium.
H. Maul, A. Scharf, P. Baier, M. Wuestemann, H.H. Guenter, G. Gebauer, and C. Sohn. Ultrasound Simulators: Experience with the SonoTrainer and Comparative Review of other Training Systems. Ultrasound in Obs. & Gyn., 24:581–585, 2004.
N. Noy, R. Fergerson, and M. Musen. The knowledge model of protégé-2000: Combining interoperability and flexibility. In EKAW, pages 17-32, 2000.
N. Noy and D. McGuinness. Ontology development 101: A guide to creating your first ontology. Smi-report, Stanford Knowledge Systems Laboratory, March 2001.
U. Ngah, C. Ping, and S. Aziz. Knowledge-Based Intelligent Information and Engineering Systems, volume 3213/2004 of Lecture Notes in Computer Science, chapter Mammographic Image and Breast Ultrasound Based Expert System for Breast Diseases, pages 599-607. Springer Berlin/Heidelberg, 2004.
R. Prager, A. Gee, and L. Berman. Stradx: real-time acquisition and visualization of freehand three-dimensional ultrasound. Medical Image Analysis, 1999.
D. Pretorius, T. Nelson, and J. Jaffe. 3-dimensional sonographic analysis based on color flow doppler and gray scale image data - a preliminary report. Ultrasound in Medicine, 11:225232, 1992.
G. Reis, M. Betram, R.H. van Lengen, and H. Hagen. Adaptive Volume Construction from Ultrasound Images of a Human Heart. In Eurographics/IEEE TCVG Visualization Symposium Proceedings, pages 321-330, 2004.
G. Reis. Algorithmische Aspekte des 4dimensionalen Ultraschalls. PhD thesis, Technische Universität Kaiserslautern, 2005.
T. Roxborough and G. Nielson. Tetrahedron Based, Least Squares, Progressive Volume Models with Applications to Freehand Ultrasound Data. In Proceedings of IEEE Visualization, pages 93-100, 2000.
O. Schweikart and F. Metzger. Standardisierte Befunderfassung in der Echokardiographie mittels WWW: EchoBefundSystem. Z Kardiol 89, pages 176–185, 2000.
K. Schwenk, G. Reis, and R.H. van Lengen. Real-time Artificial Ultra-sound, 2005. submitted to Elsevier Science.
F. Sachse, C. Werner, M. Stenroos, R. Schulte, P. Zerfass, and O. Dössel. Modeling the anatomy of the human heart using the cyrosec-tion images of the visible female dataset, 2000. Third Users Conference of the National Library of Medicine’s Visible Human Project.
S. Tong, D. Downey, H. Cardinal, and A. Fenster. A three-dimensional ultrasound prostate imaging system. Ultrasound in Medicine and Bi-ology, 22:73546, 1996.
G. Treece, A. Gee, R. Prager, C. Cash, and L. Berman. High Resolution Freehand 3D Ultrasound. Technical report, University of Cambridge, 2002.
R.H. van Lengen, S. Köhn, M. Bertram, B. Klein, and H. Hagen. Mit Ontologien visualisieren. Informatik Spektrum Sonderheft - Computer-graphik, March 2004.
R.F. Wagner, S.W. Smith, J.M. Sandrick, and H. Lopez. Statistics of Speckle in Ultrasound B-Scans. IEEE Trans. Son. Ultrason, 30:156–163, 1983.
M. Weidenbach, C. Wicks, S. Pieper, K.J. Quast, T. Fox, G. Grunst, and D.A. Redel. Augmented Reality Simulator for Training in Twodimensional Echocardiography. Computers and Biomedical Research, 33:11–22, 2000.
Z. You, M. Lusk, R. Ludwig, and W. Lord. Numerical Simulation of Ultrasonic Wave Propagation in Anisotropic and Attenuative Solid Materials. IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, 38(5),1991.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer
About this paper
Cite this paper
Reis, G., Lappé, B., Köhn, S., Weber, C., Bertram, M., Hagen, H. (2008). Towards a Virtual Echocardiographic Tutoring System. In: Linsen, L., Hagen, H., Hamann, B. (eds) Visualization in Medicine and Life Sciences. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72630-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-540-72630-2_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72629-6
Online ISBN: 978-3-540-72630-2
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)