Direct Glyph-based Visualization of Diffusion MR Data Using Deformed Spheres | SpringerLink
Skip to main content

Direct Glyph-based Visualization of Diffusion MR Data Using Deformed Spheres

  • Conference paper
Visualization in Medicine and Life Sciences

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Summary

For visualization of medical diffusion data one typically computes a tensor field from a set of diffusion volume images scanned with different gradient directions. The resulting diffusion tensor field is visualized using glyph- or tracking-based approaches. The derivation of the tensor, in general, involves a loss in information, as the n > 6 diffusion values for the n gradient directions are reduced to six diverse entries of the symmetric 3 × 3 tensor matrix. We propose a direct diffusion visualization approach that does not operate on the diffusion tensor. Instead, we assemble the gradient vectors on a unit sphere and deform the sphere by the measured diffusion values in the respective gradient directions. We compute a continuous deformation model from the few discrete directions by applying several processing steps. First, we compute a triangulation of the spherical domain using a convex hull algorithm. The triangulation leads to neighborhood information for the position vectors of the discrete directions. Using a parameterization over the sphere we perform a Powell-Sabin interpolation, where the surface gradients are computed using least-squares fitting. The resulting triangular mesh is subdivided using a few Loop subdivision steps. The rendering of this subdivided triangular mesh directly leads to a glyph-based visualization of the directional diffusion measured in the respective voxel. In a natural and intuitive fashion, our deformed sphere visualization can exhibit additional, possibly valuable information in comparison to the classical tensor glyph visualization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. F. Aurenhammer. Voronoi diagrams - a survey of a fundamental geometric data structure. ACM Computing Surveys, 23:345–405, 1991.

    Article  Google Scholar 

  2. A. Barr. Superquadrics and angle-preserving transformations. IEEE Computer Graphics and Applications, 18(1):11–23, 1981.

    Article  Google Scholar 

  3. C.B. Barber. The quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software, 22(4):469–483, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  4. Mats Bjornemo, Anders Brun, Ron Kikinis, and Carl-Fredrik Westin. Regularized stochastic white matter tractography using diffusion tensor mri. In MICCAI 2002, 2002.

    Google Scholar 

  5. A. Brun, M. Bjornemo, R. Kikinis, and C.-F. Westin. White matter tractography using sequential importance sampling. In ISMRM 2002, 2002.

    Google Scholar 

  6. Peter J. Basser, Sinisa Pajevic, Carlo Pierpaoli, Jeffrey Duda, and Akram Aldroubi. In vivo fiber tractography using dt-mri data. Magnetic Resonance in Medicine, 44:625–632, 2000.

    Article  Google Scholar 

  7. Mario Hlawitschka and Gerik Scheuermann. Hot-lines - tracking lines in higher order tensor fields. In Cláudio T. Silva, Eduard Gröller, and Holly Rushmeier, editors, Proceedings of IEEE Conference on Visualization 2005, pages 27-34, 2005.

    Google Scholar 

  8. Gordon Kindlmann and David Weinstein. Hue-balls and lit-tensors for direct volume rendering of diffusion tensor fields. In Proceedings of IEEE Conference on Visualization ’99, pages 183-189, Los Alamitos, CA, USA, 1999. IEEE Computer Society Press.

    Google Scholar 

  9. D. LeBihan. Diffusion tensor imaging: Concepts and applications. Journal of Magnetic Resonance Imaging, 13:534–546, 2001.

    Article  Google Scholar 

  10. C.T. Loop. Smooth subdivision surfaces based on triangles. Master’s thesis, Department of Mathematics, University of Utah, 1987.

    Google Scholar 

  11. O.Coulon, D.C. Alex, and S.R.Arridge. Tensor field regularisation for dt-mr images. In Proceedings of British Conference on Medical Image Understanding and Analysis 2002, 2002.

    Google Scholar 

  12. C. Pierpaoli and P. J. Basser. Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med., 36(6):893–906, 1996.

    Article  Google Scholar 

  13. C. Poupon, C. A. Clark, V. Frouin, J. Regis, I. Block, D. Le Behan, and J.-F. Mangin. Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles. NeuroImage, 12:184–195, 2000.

    Article  Google Scholar 

  14. P.G.Batchelor, D.L.G.Hill, D.Atkinson, F.Calamanten, and A.Connellyn.Fibre-tracking by solving the diffusion-convection equation. In ISMRM 2002, 2002.

    Google Scholar 

  15. Sinisa Pajevic and Carl Pierpaoli. Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: Application to white matter fiber tract mapping in the human brain. Magnetic Resonance in Medicine, 42:526–540, 1999.

    Article  Google Scholar 

  16. M.J.D. Powell and M.A. Sabin. Piecewise quadratic approximation on triangles. ACM Transactions on Mathematical Software, 3(4):316–325, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  17. Geoffrey J.M. Parker Klaas, E. Stephan, Gareth J. Barker, James B. Rowe, David, G. MacManus Claudia A. M. Wheeler-Kingshott, Olga Ciccarelli, Richard E. Passingham, Rachel, L. Spinks, Roger, N. D. Lemon, and Robert Turner. Initial demonstration of in vivo tracing of axonal projections in the macaque brain and comparison with the human brain using diffusion tensor imaging and fast marching tractography. NeuroImage, 15:797–809, 2002.

    Article  Google Scholar 

  18. D. S. Tuch, T. G. Reese, M. R. Wiegell, N. Makris, J. W. Belliveau, and V. J. Wedeen. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Reson. Med., 48(4):577–582, 2002.

    Article  Google Scholar 

  19. David S. Tuch. High angular resolution diffusion imaging reveals in-travoxel white matter fiber heterogeneity. Magnetic Resonance in Medicine, 48:577–582, 2004.

    Google Scholar 

  20. David S. Tuch. Q-ball imaging. Magnetic Resonance in Medicine, 52:1358–1372, 2004.

    Article  Google Scholar 

  21. D. S. Tuch, R. M. Weisskoff, J. W. Belliveau, and V. J. Wedeen. High angular resolution diffusion imaging of the human brain. In Proceedings of the 7th Annual Meeting of ISMRM, page 321, 1999.

    Google Scholar 

  22. David M. Weinstein, Gordon L. Kindlmann, and Eric C. Lundberg. Tensorlines: Advection-diffusion based propagation through diffusion tensor fields. In IEEE Visualization ’99, pages 249-254, 1999.

    Google Scholar 

  23. C.-F. Westin, S. E. Maier, H. Mamata, A. Nabavi, F. A. Jolesz, and R. Kikinis. Processing and visualization for diffusion tensor mri. Medical Image Analysis, 6:93–108, 2002.

    Article  Google Scholar 

  24. [ZB02] L. Zhukov and A. Barr. Oriented tensor reconstruction: tracing neural pathways from diffusion tensor mri. In Proceedings of the conference on Visualization 2002, pages 387-394, 2002.

    Google Scholar 

  25. Song Zhang, Cagatay Demiralp, and David H. Laidlaw. Visualizing diffusion tensor mr images using streamtubes and streamsurfaces. IEEE Transactions on Visualization and Computer Graphics, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this paper

Cite this paper

Domin, M., Langner, S., Hosten, N., Linsen, L. (2008). Direct Glyph-based Visualization of Diffusion MR Data Using Deformed Spheres. In: Linsen, L., Hagen, H., Hamann, B. (eds) Visualization in Medicine and Life Sciences. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72630-2_11

Download citation

Publish with us

Policies and ethics