Summary
For visualization of medical diffusion data one typically computes a tensor field from a set of diffusion volume images scanned with different gradient directions. The resulting diffusion tensor field is visualized using glyph- or tracking-based approaches. The derivation of the tensor, in general, involves a loss in information, as the n > 6 diffusion values for the n gradient directions are reduced to six diverse entries of the symmetric 3 × 3 tensor matrix. We propose a direct diffusion visualization approach that does not operate on the diffusion tensor. Instead, we assemble the gradient vectors on a unit sphere and deform the sphere by the measured diffusion values in the respective gradient directions. We compute a continuous deformation model from the few discrete directions by applying several processing steps. First, we compute a triangulation of the spherical domain using a convex hull algorithm. The triangulation leads to neighborhood information for the position vectors of the discrete directions. Using a parameterization over the sphere we perform a Powell-Sabin interpolation, where the surface gradients are computed using least-squares fitting. The resulting triangular mesh is subdivided using a few Loop subdivision steps. The rendering of this subdivided triangular mesh directly leads to a glyph-based visualization of the directional diffusion measured in the respective voxel. In a natural and intuitive fashion, our deformed sphere visualization can exhibit additional, possibly valuable information in comparison to the classical tensor glyph visualization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
F. Aurenhammer. Voronoi diagrams - a survey of a fundamental geometric data structure. ACM Computing Surveys, 23:345–405, 1991.
A. Barr. Superquadrics and angle-preserving transformations. IEEE Computer Graphics and Applications, 18(1):11–23, 1981.
C.B. Barber. The quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software, 22(4):469–483, 1996.
Mats Bjornemo, Anders Brun, Ron Kikinis, and Carl-Fredrik Westin. Regularized stochastic white matter tractography using diffusion tensor mri. In MICCAI 2002, 2002.
A. Brun, M. Bjornemo, R. Kikinis, and C.-F. Westin. White matter tractography using sequential importance sampling. In ISMRM 2002, 2002.
Peter J. Basser, Sinisa Pajevic, Carlo Pierpaoli, Jeffrey Duda, and Akram Aldroubi. In vivo fiber tractography using dt-mri data. Magnetic Resonance in Medicine, 44:625–632, 2000.
Mario Hlawitschka and Gerik Scheuermann. Hot-lines - tracking lines in higher order tensor fields. In Cláudio T. Silva, Eduard Gröller, and Holly Rushmeier, editors, Proceedings of IEEE Conference on Visualization 2005, pages 27-34, 2005.
Gordon Kindlmann and David Weinstein. Hue-balls and lit-tensors for direct volume rendering of diffusion tensor fields. In Proceedings of IEEE Conference on Visualization ’99, pages 183-189, Los Alamitos, CA, USA, 1999. IEEE Computer Society Press.
D. LeBihan. Diffusion tensor imaging: Concepts and applications. Journal of Magnetic Resonance Imaging, 13:534–546, 2001.
C.T. Loop. Smooth subdivision surfaces based on triangles. Master’s thesis, Department of Mathematics, University of Utah, 1987.
O.Coulon, D.C. Alex, and S.R.Arridge. Tensor field regularisation for dt-mr images. In Proceedings of British Conference on Medical Image Understanding and Analysis 2002, 2002.
C. Pierpaoli and P. J. Basser. Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med., 36(6):893–906, 1996.
C. Poupon, C. A. Clark, V. Frouin, J. Regis, I. Block, D. Le Behan, and J.-F. Mangin. Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles. NeuroImage, 12:184–195, 2000.
P.G.Batchelor, D.L.G.Hill, D.Atkinson, F.Calamanten, and A.Connellyn.Fibre-tracking by solving the diffusion-convection equation. In ISMRM 2002, 2002.
Sinisa Pajevic and Carl Pierpaoli. Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: Application to white matter fiber tract mapping in the human brain. Magnetic Resonance in Medicine, 42:526–540, 1999.
M.J.D. Powell and M.A. Sabin. Piecewise quadratic approximation on triangles. ACM Transactions on Mathematical Software, 3(4):316–325, 1977.
Geoffrey J.M. Parker Klaas, E. Stephan, Gareth J. Barker, James B. Rowe, David, G. MacManus Claudia A. M. Wheeler-Kingshott, Olga Ciccarelli, Richard E. Passingham, Rachel, L. Spinks, Roger, N. D. Lemon, and Robert Turner. Initial demonstration of in vivo tracing of axonal projections in the macaque brain and comparison with the human brain using diffusion tensor imaging and fast marching tractography. NeuroImage, 15:797–809, 2002.
D. S. Tuch, T. G. Reese, M. R. Wiegell, N. Makris, J. W. Belliveau, and V. J. Wedeen. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Reson. Med., 48(4):577–582, 2002.
David S. Tuch. High angular resolution diffusion imaging reveals in-travoxel white matter fiber heterogeneity. Magnetic Resonance in Medicine, 48:577–582, 2004.
David S. Tuch. Q-ball imaging. Magnetic Resonance in Medicine, 52:1358–1372, 2004.
D. S. Tuch, R. M. Weisskoff, J. W. Belliveau, and V. J. Wedeen. High angular resolution diffusion imaging of the human brain. In Proceedings of the 7th Annual Meeting of ISMRM, page 321, 1999.
David M. Weinstein, Gordon L. Kindlmann, and Eric C. Lundberg. Tensorlines: Advection-diffusion based propagation through diffusion tensor fields. In IEEE Visualization ’99, pages 249-254, 1999.
C.-F. Westin, S. E. Maier, H. Mamata, A. Nabavi, F. A. Jolesz, and R. Kikinis. Processing and visualization for diffusion tensor mri. Medical Image Analysis, 6:93–108, 2002.
[ZB02] L. Zhukov and A. Barr. Oriented tensor reconstruction: tracing neural pathways from diffusion tensor mri. In Proceedings of the conference on Visualization 2002, pages 387-394, 2002.
Song Zhang, Cagatay Demiralp, and David H. Laidlaw. Visualizing diffusion tensor mr images using streamtubes and streamsurfaces. IEEE Transactions on Visualization and Computer Graphics, 2003.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer
About this paper
Cite this paper
Domin, M., Langner, S., Hosten, N., Linsen, L. (2008). Direct Glyph-based Visualization of Diffusion MR Data Using Deformed Spheres. In: Linsen, L., Hagen, H., Hamann, B. (eds) Visualization in Medicine and Life Sciences. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72630-2_11
Download citation
DOI: https://doi.org/10.1007/978-3-540-72630-2_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72629-6
Online ISBN: 978-3-540-72630-2
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)