Abstract
In this paper a possibility of neural network application to data processing in magnetotelluric method is studied. The modular neural system, consisting of three multi-layer neural networks, is used for obtaining geoelectric model of lithosphere basing on amplitude and phase MT curves. Cases of two and three flat lithosphere layers are considered.
Chapter PDF
Similar content being viewed by others
References
Auda, G., Kamel, M.: Cooperative modular neural networks for pattern recognition. Pattern Recognition Let. 18, 1391–1398 (1997)
Cagniard, L.: Basic theory of the magnetotelluric method of geophysical prospecting. Geophysics 18, 605–637 (1953)
Marciniak, A., Korbicz, J.: Modular neural networks. In: Duch, W., Korbicz, J., Rutkowski, L., Tadeusiewicz, R. (eds.) Biocybernetics and Biomedical Engineering, pp. 135–178. EXIT, Warszawa (2000)
Sarlis, N., Lazaridou, M., Kapiris, P., Varotsos, P.: Numerical model of the selectivity effect and the DV/L criterion. Geophysics Research Letters 26, 3245–3248 (1999)
Sharkey, A. (ed.): Combining Artificial Neural Nets: Ensemble and Modular Multi-Net Systems. Springer, Berlin (1999)
Tikhonov, A.N.: The determination of the electrical properities of deep layers of the Earth’s crust. Dokl. Acad. Nauk. SSR 73, 295–297 (1950)
Varotsos, P., Alexopoulos, K., Nomicos, K., Lazaridou, M.: Official earthquake prediction in Greece. Tectonophysics 152, 193–196 (1988)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Bielecki, A., Danek, T., Jagodziński, J., Wojdyła, M. (2007). Artificial Neural Networks Application to Calculate Parameter Values in the Magnetotelluric Method. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds) Computational Science – ICCS 2007. ICCS 2007. Lecture Notes in Computer Science, vol 4488. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72586-2_82
Download citation
DOI: https://doi.org/10.1007/978-3-540-72586-2_82
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72585-5
Online ISBN: 978-3-540-72586-2
eBook Packages: Computer ScienceComputer Science (R0)