Reliability-Based Voting Schemes Using Modality-Independent Features in Multi-classifier Biometric Authentication | SpringerLink
Skip to main content

Reliability-Based Voting Schemes Using Modality-Independent Features in Multi-classifier Biometric Authentication

  • Conference paper
Multiple Classifier Systems (MCS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4472))

Included in the following conference series:

Abstract

We present three new voting schemes for multi-classifier biometric authentication using a reliability model to influence the importance of each base classifier’s vote. The reliability model is a meta-classifier computing the probability of a correct decision for the base classifiers. It uses two features which do not depend directly on the underlying physical signal properties, verification score and difference between user-specific and user-independent decision threshold. It is shown on two signature databases and two speaker databases that this reliability classification can systematically reduce the number of errors compared to the base classifier. Fusion experiments on the signature databases show that all three voting methods (rigged majority voting, weighted rigged majority voting, and selective rigged majority voting) perform significantly better than majority voting, and that given sufficient training data, they also perform significantly better than the best classifier in the ensemble.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kryszczuk, K., et al.: Error handling in multimodal biometric systems using reliability measures. In: Proc. 12th European Conference on Signal Processing (EUSIPCO), Antalya, Turkey (September 2005)

    Google Scholar 

  2. Fierrez-Aguilar, J., et al.: Discriminative multimodal biometric authentication based on quality measures. Pattern Recognition 38(5), 777–779 (2005), http://www.sciencedirect.com/science/article/B6V14-4F94YJM-1/2/8b1548055c705c545ca83ae529d430b3

    Article  Google Scholar 

  3. Kittler, J., Sadeghi, M.T.: Confidence Based Gating of Multiple Face Authentication Experts. In: Yeung, D.-Y., et al. (eds.) SSPR 2006 and SPR 2006. LNCS, vol. 4109, pp. 667–676. Springer, Heidelberg (2006)

    Google Scholar 

  4. Ortega, J., Koppel, M., Argamon, S.: Arbitrating among competing classifiers using learned referees. Knowledge and Information Systems 3(4), 470–490 (2001), http://dx.doi.org/10.1007/PL00011679

    Article  MATH  Google Scholar 

  5. Alpaydin, E., Kaynak, C.: Cascading classifiers. Kybernetika 34(4), 369–374 (1998)

    Google Scholar 

  6. Koppel, M., Engelson, S.P.: Integrating multiple classifiers by finding their areas of expertise. In: Working Notes of the Workshop on Integrating Multiple Learned Models for Improving and Scaling Machine Learning Algorithms, held in conjunction with the 13th Nat. Conf. on Artificial Intelligence (AAAI-96) (1996)

    Google Scholar 

  7. Dutra, T., Canuto, A.M.P., de Souto, M.C.P.: Using weighted combination-based methods in ensembles with different levels of diversity. In: King, I., et al. (eds.) ICONIP 2006. LNCS, vol. 4232, pp. 708–717. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Bengio, S., et al.: Confidence measures for multimodal identity verification. Information Fusion 3(4), 267–276 (2002), http://www.sciencedirect.com/science/article/B6W76-475B88V-1/2/d257a1dca387074d3ea06dfc92ca0831

    Article  Google Scholar 

  9. Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)

    Google Scholar 

  10. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001), http://dx.doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  11. Richiardi, J., Prodanov, P., Drygajlo, A.: Speaker verification with confidence and reliability measures. In: Proc. 2006 IEEE International Conference on Speech, Acoustics and Signal Processing, Toulouse, France, May 2006, IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  12. Kryszczuk, K., Drygajlo, A.: Reliability measures and error prediction in biometric identity verification. Journal of Signal Processing (submitted) (2006)

    Google Scholar 

  13. Matan, O.: On voting ensembles of classifiers (extended abstract). In: Working Notes of the Workshop on Integrating Multiple Learned Models for Improving and Scaling Machine Learning Algorithms, held in conjunction with the 13th Nat. Conf. on Artificial Intelligence (AAAI-96), Portland, USA (1996)

    Google Scholar 

  14. Kuncheva, L.I.: Combining Pattern Classifiers. Wiley and sons, Chichester (2004)

    MATH  Google Scholar 

  15. Ortega-Garcia, J., et al.: MCYT baseline corpus: a bimodal biometric database. IEE Proc. Vision, Image and Signal Processing 150(6), 395–401 (2003)

    Article  Google Scholar 

  16. Rigoll, G., et al.: SVC2004: First International Signature Verification Competition. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 16–22. Springer, Heidelberg (2004)

    Google Scholar 

  17. Bailly-Bailliére, E., et al.: The BANCA database and evaluation protocol. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 625–638. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Messer, K., et al.: XM2VTSDB: The extended M2VTS database. In: Proceedings of 2nd International Conference on Audio- and Video-Based Biometric Person Authentication (AVBPA), pp. 72–77 (1999)

    Google Scholar 

  19. Richiardi, J., Drygajlo, A.: Gaussian mixture models for on-line signature verification. In: Proc. ACM SIGMM Multimedia, Workshop on Biometrics methods and applications (WBMA), Berkeley, USA, Nov. 2003, pp. 115–122. ACM Press, New York (2003)

    Chapter  Google Scholar 

  20. Bonastre, J.-F., Wils, F., Meignier, S.: ALIZE, a free toolkit for speaker recognition. In: Proceedings IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2005), Philadelphia, USA, March 2005, pp. 737–740. IEEE Computer Society Press, Los Alamitos (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michal Haindl Josef Kittler Fabio Roli

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Richiardi, J., Drygajlo, A. (2007). Reliability-Based Voting Schemes Using Modality-Independent Features in Multi-classifier Biometric Authentication. In: Haindl, M., Kittler, J., Roli, F. (eds) Multiple Classifier Systems. MCS 2007. Lecture Notes in Computer Science, vol 4472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72523-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72523-7_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72481-0

  • Online ISBN: 978-3-540-72523-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics