Modular Neural Networks with Fuzzy Integration Applied for Time Series Forecasting | SpringerLink
Skip to main content

Modular Neural Networks with Fuzzy Integration Applied for Time Series Forecasting

  • Chapter
Analysis and Design of Intelligent Systems using Soft Computing Techniques

Part of the book series: Advances in Soft Computing ((AINSC,volume 41))

Abstract

We describe in this paper the application of several neural network architectures to the problem of simulating and predicting the dynamic behavior of complex economic time series. We use several neural network models and training algorithms to compare the results and decide at the end, which one is best for this application. We also compare the simulation results with the traditional approach of using a statistical model. In this case, we use real time series of prices of consumer goods to test our models. Real prices of tomato and green onion in the U.S. show complex fluctuations in time and are very complicated to predict with traditional statistical approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boers, E., Kuiper, H.: Biological Metaphors and the Design of Modular Artificial Neural Networks. Departments of Computer Science and Experimental and Theoretical Psychology at Leiden University, the Netherlands (1992)

    Google Scholar 

  2. Brock, W.A., Hsieh, D.A., LeBaron, B.: Nonlinear Dynamics, Chaos and Instability. MIT Press, Cambridge (1991)

    Google Scholar 

  3. Castillo, O., Melin, P.: Automated Mathematical Modelling for Financial Time Series Prediction using Fuzzy Logic, Dynamical System Theory and Fractal Theory. In: Proceedings of CIFEr’96, pp. 120–126. IEEE Computer Society Press, New York (1996)

    Google Scholar 

  4. Castillo, O., Melin, P.: A New Fuzzy-Genetic Approach for the Simulation and Forecasting of International Trade Non-Linear Dynamics. In: Proceedings of CIFEr’98, pp. 189–196. IEEE Computer Society Press, New York (1998)

    Google Scholar 

  5. Castillo, O., Melin, P.: Automated Mathematical Modelling for Financial Time Series Prediction Combining Fuzzy Logic and Fractal Theory. In: Soft Computing for Financial Engineering, pp. 93–106. Springer, Heidelberg (1999)

    Google Scholar 

  6. Castillo, O., Melin, P.: Soft Computing and Fractal Theory for Intelligent Manufacturing. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  7. Fu, H.-C., et al.: Divide-and-Conquer Learning and Modular Perceptron Networks. IEEE Transaction on Neural Networks 12(2), 250–263 (2001)

    Article  Google Scholar 

  8. Hansen, L.K., Salamon, P.: Neural Network Ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(10), 993–1001 (1990)

    Article  Google Scholar 

  9. Haykin, S.: Adaptive Filter Theory, 3rd edn. Prentice Hall, Englewood Cliffs (1996)

    Google Scholar 

  10. Jang, J.-S.R., Sun, C.-T., Mizutani, E.: Neuro-fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice-Hall, Englewood Cliffs (1997)

    Google Scholar 

  11. Lu, B., Ito, M.: Task Decomposition and module combination based on class relations: modular neural network for pattern classification. Technical Report, Nagoya Japan (1998)

    Google Scholar 

  12. Maddala, G.S.: Introduction to Econometrics. Prentice-Hall, Englewood Cliffs (1996)

    Google Scholar 

  13. Murray-Smith, R., Johansen, T.A.: Multiple Model Approaches to Modeling and Control. Taylor & Francis, Abington (1997)

    Google Scholar 

  14. Parker, D.B.: Learning Logic. Invention Report 581-64, Stanford University (1982)

    Google Scholar 

  15. Quezada, A.: Reconocimiento de Huellas Digitales Utilizando Redes Neuronales Modulares y Algoritmos Geneticos. Thesis of Computer Science, Tijuana Institute of Technology, Mexico (2004)

    Google Scholar 

  16. Rasband, S.N.: Chaotic Dynamics of Non-Linear Systems. Wiley, Chichester (1990)

    Google Scholar 

  17. Ronco, E., Gawthrop, P.J.: Modular neural networks: A State of the Art. Technical Report, Center for System and Control. University of Glasgow, Glasgow, UK (1995)

    Google Scholar 

  18. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning Internal Representations by Error Propagation. In: Parallel Distributed Processing: Explorations in the Microstructures of Cognition, vol. 1, pp. 318–362. MIT Press, Cambridge (1986)

    Google Scholar 

  19. Schdmit, A., Bandar, Z.: A Modular Neural Network Architecture with Additional Generalization Abilities for High Dimensional Input Vectors. In: Proceedings of ICANNGA’97, Norwich, England (1997)

    Google Scholar 

  20. Sharkey, A.: Combining Artificial Neural Nets: Ensemble and Modular Multi-Nets Systems. Springer, London (1999)

    Google Scholar 

  21. Sugeno, M.: Theory of fuzzy integrals and its application, Doctoral Thesis, Tokyo Institute of Technology, Japan (1974)

    Google Scholar 

  22. White, H.: An Additional Hidden Unit Test for Neglected Non-linearity in Multilayer Feedforward Networks. In: Proceedings of IJCNN’89, Washington, D.C, pp. 451–455. IEEE Press, Los Alamitos (1989)

    Google Scholar 

  23. Yager, R.R.: Criteria Aggregations Functions Using Fuzzy Measures and the Choquet Integral. International Journal of Fuzzy Systems 1(2) (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Patricia Melin Oscar Castillo Eduardo Gomez Ramírez Janusz Kacprzyk Witold Pedrycz

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Melin, P., Mancilla, A., Lopez, M., Trujillo, W., Cota, J., Gonzalez, S. (2007). Modular Neural Networks with Fuzzy Integration Applied for Time Series Forecasting. In: Melin, P., Castillo, O., Ramírez, E.G., Kacprzyk, J., Pedrycz, W. (eds) Analysis and Design of Intelligent Systems using Soft Computing Techniques. Advances in Soft Computing, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72432-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72432-2_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72431-5

  • Online ISBN: 978-3-540-72432-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics